
Chapter 8
The GitHub Development Workflow
Automation Ecosystems

Mairieli Wessel, Tom Mens, Alexandre Decan, and Pooya Rostami Mazrae

Abstract Large-scale software development has become a highly collaborative and
geographically distributed endeavor, especially in open-source software develop-
ment ecosystems and their associated developer communities. It has given rise
to modern development processes (e.g., pull-based development) that involve a
wide range of activities such as issue and bug handling, code reviewing, coding,
testing, and deployment. These often very effort-intensive activities are supported
by a wide variety of tools such as version control systems, bug and issue trackers,
code reviewing systems, code quality analysis tools, test automation, dependency
management, and vulnerability detection tools. To reduce the complexity of the
collaborative development process, many of the repetitive human activities that
are part of the development workflow are being automated by CI/CD tools that
help to increase the productivity and quality of software projects. Social coding
platforms aim to integrate all this tooling and workflow automation in a single
encompassing environment. These social coding platforms gave rise to the emer-
gence of development bots, facilitating the integration with external CI/CD tools
and enabling the automation of many other development-related tasks. GitHub, the
most popular social coding platform, has introduced GitHub Actions to automate
workflows in its hosted software development repositories since November 2019.
This chapter explores the ecosystems of development bots and GitHub Actions and
their interconnection. It provides an extensive survey of the state of the art in this
domain, discusses the opportunities and threats that these ecosystems entail, and

M. Wessel (�)
Radboud University, Nijmegen, Netherlands
e-mail: mairieli.wessel@ru.nl

T. Mens · P. Rostami Mazrae
University of Mons, Mons, Belgium
e-mail: Tom.Mens@umons.ac.be; PooyaRostami.Mazrae@umons.ac.be

A. Decan
Alexandre Decan is a Research Associate of the Fonds de la Recherche Scientifique - FNRS,
University of Mons, Mons, Belgium
e-mail: Alexandre.Decan@umons.ac.be

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Mens et al. (eds.), Software Ecosystems,
https://doi.org/10.1007/978-3-031-36060-2_8

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36060-2protect unhbox voidb@x penalty @M hskip z@skip T1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip 8&domain=pdf

 885
47989 a 885 47989 a

mailto:mairieli.wessel@ru.nl
mailto:mairieli.wessel@ru.nl
mailto:mairieli.wessel@ru.nl

 885 51863 a 885 51863 a

mailto:Tom.Mens@umons.ac.be
mailto:Tom.Mens@umons.ac.be
mailto:Tom.Mens@umons.ac.be
mailto:Tom.Mens@umons.ac.be

 10980 51863 a 10980 51863 a

mailto:PooyaRostami.Mazrae@umons.ac.be
mailto:PooyaRostami.Mazrae@umons.ac.be
mailto:PooyaRostami.Mazrae@umons.ac.be
mailto:PooyaRostami.Mazrae@umons.ac.be

 885 56845 a 885 56845 a

mailto:Alexandre.Decan@umons.ac.be
mailto:Alexandre.Decan@umons.ac.be
mailto:Alexandre.Decan@umons.ac.be
mailto:Alexandre.Decan@umons.ac.be
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1007/978-3-031-36060-2_8

184 M. Wessel et al.

reports on the challenges and future perspectives for researchers as well as software
practitioners.

8.1 Introduction

This introductory section presents the necessary context to set the scene. We start
by introducing collaborative software development and social coding (Sect. 8.1.1).
Next, we report on the emergence and dominance of GitHub as the most popular
social coding platform (Sect. 8.1.2). We continue with a discussion of the prac-
tices of continuous integration, deployment, and delivery (Sect. 8.1.3). Finally, we
explain the workflow automation solutions of development bots and GitHub Actions
that have emerged as highly interconnected ecosystems to support these practices
and that have become omnipresent in GitHub (Sect. 8.1.4).

We argue that these workflow automation solutions in GitHub constitute novel
software ecosystems that are worthy of being studied in their own right. More
specifically, Sect. 8.2 focuses on how development bots should be considered as
an integral and important part of the fabric of GitHub’s socio-technical ecosystem.
Section 8.3 focuses on GitHub Actions and how this forms an automation workflow
dependency network bearing many similarities with the ones that have been studied
abundantly for packaging ecosystems of reusable software libraries. Section 8.4
wraps up with a discussion about how both types of automation solutions are
interrelated and how they are drastically changing the larger GitHub ecosystem of
which they are part.

8.1.1 Collaborative Software Development and Social Coding

The large majority of today’s software is either open source or depends on it to a
large extent. In response to a demand for higher-quality software products and faster
time to market, open-source software (OSS) development has become a continuous,
highly distributed, and collaborative endeavor [15]. In such a setting, development
teams often collaborate on these projects without geographical boundaries [37]. It
is no longer expected for software projects to have all their developers working
in the same location during the same office hours. To achieve this new way of
software development, specific collaboration mechanisms have been devised such
as issue and bug tracking, pull-based development [34], code reviews, commenting
mechanisms, and the use of social communication channels to interact with other
project contributors. Collaboration extends distributed software development from
a primarily technical activity to an increasingly social phenomenon [55]. Social
activities play an essential role in collaborative development and become sometimes
as critical as technical activities. They also come with their own challenges, for

8 The GitHub Development Workflow Automation Ecosystems 185

example, because of cultural differences, language barriers, or social conflicts
[10, 38].

A multitude and variety of development-related activities need to be carried
out during collaborative software development: developing, debugging, testing, and
reviewing code; quality and security analysis; packaging, releasing, and deploying
software distributions; and so on. This makes it increasingly challenging for con-
tributor communities to keep up with the rapid pace of producing and maintaining
high-quality software releases. It requires the orchestrated use of a wide range of
tools such as version control systems, software distribution managers, bug and issue
trackers, and vulnerability and dependency analyzers.

These tools therefore tend to be integrated into so-called social coding platforms
(e.g., GitLab, GitHub, Bitbucket) that have revolutionized collaborative software
development practices in the last decade because they provide a high degree of social
transparency to all aspects of the development process [16]. Social coding platforms
aim to reconcile the technical and social aspects of software development in a single
environment. It offers the project contributors a seamless interface and experience
to contribute with their peers in an open and fully transparent workflow, where
users can contribute bugs and feature requests through an issue tracking system,
external contributors can propose code changes through a pull request mechanism,
core software developers can push (i.e., commit) their own code changes directly
and accept and integrate the changes proposed by external contributors, and code
review mechanisms allow code changes to be reviewed by other developers before
they can be accepted [34].

8.1.2 The GitHub Social Coding Platform

GitHub has revolutionized software development since it was the first platform to
propose a pull-based software development process [3, 34]. The pull-based model
allows to make a distinction between direct contributions from a typically small
group of core developers with commit access to the main code repository and
indirect contributions from external contributors that do not have direct commit
access. This allows external contributors to propose code changes and code
additions through so-called pull requests (PRs). To do so, these contributors have
to fork the main repository, update their local copies with code changes, and submit
PRs to request to pull these changes into the main code repository [35]. This indirect
contribution method enables the project’s maintainers to review the code submitted
through each PR, test it, request changes to the submitter of the PR if needed,
and finally integrate the PR into the codebase without getting involved in code
development [35]. A pull-based development process also comes at a certain cost,
since it raises the need for integrators—specialized project members responsible for
managing others’ contributions who act as guardians of the projects’ quality [36].

The focus of this chapter will be on GitHub, since it is the largest and most
popular social coding platform by far, especially for open-source projects, and as a

186 M. Wessel et al.

consequence, it has been the focus of a significant amount of empirical research. It
is a web-based platform on the cloud, based on the git version control system, that
hosts the development history of millions of collaborative software repositories and
accommodates over 94 million users in 2022 [29].

GitHub continues to include more and more support for collaborative software
development such as a web-based interface on top of the git version control system,
an issue tracker, the ability to manage project collaborators, the ability to have
a discussion forum for each git repository, an easy way to manage PRs or even
to submit new PRs directly from within the GitHub interface, a mechanism to
create project releases, the ability to create and host project websites, the ability
to plan and track projects, support for analyzing outdated dependencies and security
vulnerabilities, and metrics and visualizations that provide insights in how the
project and its community are evolving over time. GitHub also comes with a
REST and GraphQL API to query and retrieve data from GitHub or to integrate
GitHub repositories with external tools. By late 2022, GitHub added a range of new
features including (i) github.dev, a web-based code editor that runs entirely in the
Internet browser to navigate, edit, and commit code changes directly from within
the browser; (ii) GitHub CodeSpaces, a more complete development environment
that is hosted in the cloud; (iii) GitHub Packages to create, publish, view, and install
new packages directly from one’s code repository; (iv) GitHub CoPilot, an AI-based
tool that provides smart code auto-completion; and (v) GitHub Actions, a workflow
automation tool fully integrated into GitHub.

8.1.3 Continuous Integration and Deployment

Continuous integration (CI), continuous deployment, and continuous delivery (CD)
have become the cornerstone of collaborative software development practices. CI
practices were introduced in the late 1990s in the context of agile development and
extreme programming methodologies. According to the Agile Manifesto principles,
“our highest priority is to satisfy the customer through early and continuous delivery
of valuable software” [5]. In their seminal blog [28], Fowler and Foemmel presented
CI as a way to increase the speed of software development while at the same time
improving software quality and reducing the cost and risk of work integration among
distributed teams. They outlined core CI practices to do so, including frequent
code commits, automated tests that run several times a day, frequent and fully
reproducible builds, immediately fixing broken builds, and so on. CD practices,
on the other hand, aim at automating the delivery and deployment of software
products, following any changes to their code [12]. Key elements of continuous
deployment are the creation of feasible, small, and isolated software updates that
are automatically deployed immediately after completion of the development and
testing [49].

Many self-hosted CI/CD tools and cloud-based CI/CD services automate the
integration of code changes from multiple contributors into a centralized repository

8 The GitHub Development Workflow Automation Ecosystems 187

where automated builds, tests, quality checks, and deployments are run. Popular
examples of such CI/CD solutions are Jenkins, Travis, CircleCI, and Azure DevOps.
They have been the subject of much empirical research over the last decades.
An excellent starting point is the systematic literature review by Soares et al.
[50], covering 106 research publications reporting on the use of CI/CD. This
review aimed at identifying and interpreting empirical evidence regarding how
CI/CD impacts software development. It revealed that CI/CD has many benefits
for software projects. Besides the aforementioned cost reduction and quality and
productivity improvement, it also comes with a reduction of security risks, increased
project transparency and predictability, greater confidence in the software product,
easiness to locate and fix bugs, and improved team communication. CI can also be
beneficial to pull-based development by improving and accelerating the integration
process.

CI/CD services have also been built into social coding platforms. With GitLab
CI/CD, GitLab has already featured CI/CD capabilities since November 2012.
Bitbucket has supported Pipelines since May 2016. Based on popular demand, in
response to this support for CI/CD in competing social coding platforms, GitHub
officially began supporting CI/CD through GitHub Actions in August 2019, and the
product was released publicly in November 2019. Before the release of GitHub
Actions, Travis used to be the most popular CI/CD cloud service for GitHub
repositories [6]. However, quantitative evidence has revealed that Travis is getting
replaced by GitHub Actions at a rapid pace [32]. Additional qualitative evidence
has revealed the reasons behind this replacement and the added value that GitHub
Actions is bringing in comparison to Travis [43].

8.1.4 The Workflow Automation Ecosystems of GitHub

The previous sections have highlighted that global software development, especially
for OSS projects, is a continuous, highly distributed, and collaborative endeavor.
The diversity in skills and interests of the projects’ contributors and the wide
diversity of activities that need to be supported (e.g., coding, debugging, testing,
documenting, packaging, deploying, quality analysis, security analysis, and depen-
dency analysis) make it very challenging for project communities to keep up with
the rapid pace of producing and maintaining high-quality software releases.

Solutions to automate part of the software development workflow, such as the
aforementioned CI/CD tools and services, have been successfully used to reduce
this maintenance burden (see Sect. 8.1.3). However, these tools do not support
the entire range of project-related activities for which automation could come to
the rescue. There are many repetitive and time-consuming social and technical
activities for which, traditionally, CI/CD tools did not provide any support. Some
examples of these are welcoming newcomers, keeping dependencies up to date,
detecting and resolving security vulnerabilities, triaging issues, closing stale issues,
finding and assigning code reviewers, encouraging contributors to remain active,

188 M. Wessel et al.

and software licensing. To help project contributors in carrying out these activities,
CI/CD solutions have been complemented by novel workflow automation solutions:

Development Bots A well-known and very popular example of such workflow
automation solutions is what we will refer to as development bots. Erlenhov
et al. [27] consider development bots to be artificial software developers who are
autonomous and adaptive and have technical as well as social competence. Such
automated software development agents have become a widely accepted interface
for interacting with human contributors and automating some of their tasks. A study
by Wang et al. revealed that bots are frequently used in the most popular OSS
projects on GitHub [56]. These bots tend to be specialized in specific activities,
belonging to the following main categories: CI/CD assistance, issue and PR man-
agement, code review support, dependency and security management, community
support, and documentation generation. Section 8.2 will discuss in detail how such
bots are used on GitHub to automate part of the software development workflow
and how these bots form an integral part of the socio-technical ecosystem of
software contributors and software projects. More specifically, bots affect the social
interaction within a software project, as they influence how human contributors
communicate and collaborate and may even change the collaboration patterns,
habits, and productivity of project contributors [42].

GitHub Actions Another popular mechanism to automate development activities
in GitHub repositories is using GitHub Actions, a workflow automation service
officially released in November 2019. Its deep integration into GitHub implies that
GitHub Actions can be used not only for automating traditional CI/CD services
such as executing test suites or deploying new releases, but also to facilitate other
activities such as code reviews, communicating with developers, and monitoring
and fixing dependencies and security vulnerabilities. GitHub Actions allows project
maintainers to define automated workflows for such activities. These workflows can
be triggered in a variety of ways such as commits, issues, pull requests, comments,
schedules, and many more [11]. GitHub Actions also promotes the use and sharing
of reusable components, called Actions, in workflows. These Actions are distributed
in public GitHub repositories and on the GitHub Marketplace.1 They allow devel-
opers to automate their workflows by easily integrating specific tasks (e.g., set
up a specific programming language environment, publish a release on a package
registry, run tests, and check code quality) without having to write the corresponding
code. Only 18 months after its introduction, GitHub Actions has become the most
dominant CI/CD service on GitHub [32]. Section 8.3 presents this ecosystem of
reusable Actions in more detail. This ecosystem forms a technical dependency
network that bears many similarities with traditional package dependency networks
of reusable software libraries (such as npm for JavaScript, RubyGems for Ruby,
NuGet for .NET, Packagist for PHP, CRAN for R, Maven for Java) that have been
the subject of many past empirical studies (e.g., [21]).

1 https://github.com/marketplace?type=actions.

https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions

8 The GitHub Development Workflow Automation Ecosystems 189

The two aforementioned workflow automation solutions are increasingly used in
OSS projects on GitHub, partly because of their tight integration into the social cod-
ing platform, thereby effectively transforming the software development automation
landscape. It therefore seems fair to claim that they form new development workflow
automation ecosystems that are worthy of being investigated in their own right.
Research on these ecosystems is still in its infancy, given the relative novelty of
the proposed automation solutions. Development bots and workflows that rely on
GitHub Actions are already used in hundreds of thousands of GitHub repositories,
and their usage continues to increase (the Marketplace of GitHub Actions has been
growing exponentially since its introduction), justifying the need for further studies
on the evolution of these ecosystems and their impact on collaborative software
development practices.

8.2 Workflow Automation Through Development Bots

As explained in Sect. 8.1.4, development bots emerged on social coding platforms
such as GitHub to enable the automation of various routines and time-consuming
tasks previously assigned only to human developers. This section explores how
bots are an integral part of GitHub’s socio-technical collaborative development
ecosystem. Considering the workflow automation provided by development bots,
we focus on the various usage scenarios, advantages, shortcomings, challenges, and
opportunities of using them.

8.2.1 What Are Development Bots?

Development bots that reside on social coding platforms such as GitHub are often
seen as workflow automation providers due to their ability to react to certain
stimuli, such as events triggered by human developers or other tools, and automate
routine development-related tasks in response. To a certain extent, bots may act
autonomously [27, 64]. In open-source repositories, bots can leverage the public
availability of software assets, including source code, discussions, issues, and
comments.

Besides automatically executing activities, development bots may also exhibit
human-like traits. Erlenhov et al. [27] describe bots based on their social compe-
tence, which varies from very simple identity characteristics (e.g., a human-like
name or profile picture) to more sophisticated ones such as artificial intelligence
and the ability to adapt to distinct scenarios. In practice, bots that are active in
GitHub repositories are automated agents that interact with the GitHub platform
in essentially the same way as a typical human developer would be expected to:
they possess a GitHub account, commit code, open or close issues or PRs, and
comment on all of the above. Some bots have an official integration with GitHub and

190 M. Wessel et al.

are publicly available as Apps in the GitHub marketplace.2 These official bots are
properly tagged as such in the various activities they make in the GitHub platform.

Bots can also be used as an interface between human developers and other
software services, such as external CI/CD tools or other third-party applications.
Such bots provide additional value on top of the services they offer an interface for,
by providing new forms of interaction with these services, or by combining multiple
services.

One particularly interesting example is Dependabot, a dependency manage-
ment tool responsible for creating PRs in GitHub repositories to propose to upgrade
dependencies in order to resolve or reduce the risk of security vulnerabilities or
bugs. Dependabot acts as an interface between the project maintainer, who
is responsible for keeping the project dependencies up to date, and the package
managers (such as npm for JavaScript) that expose the reusable packages that
the project depends on. While originally it used to be a third-party service,
Dependabot is now deeply integrated into the GitHub platform and has become
one of the most popular dependency management bots, accounting for more than
7.7 million dependency updates in OSS projects [65]. A well-known alternative is
renovatebot.3

Bots can even create, review, and decide whether to integrate the changes made
in a PR into the repository by themselves in complete autonomy. Figure 8.1 provides
an example of multiple bots interacting as part of a single PR. There is not a
single human contributor involved in this interaction. The PR is triggered by a
recommendation by Dependabot to update a dependency. The mergify bot
reacts to this by verifying if the proposed change passes all checks, and accepts
and merges the PR. Finally, nemobot reacts with a visual comment applauding the
merged PR.

From a research viewpoint, the increasing use of bots raises the need for large-
scale empirical studies on bot usage in social coding platforms such as GitHub.
Such studies enable us to assess whether bots serve their intended purpose and
whether their introduction has any positive or negative side effects on the socio-
technical fabric of the project or ecosystem in which they are used. To enable such
empirical studies, it is necessary to determine which projects rely on bots and which
user accounts actually correspond to bots. Several bot detection heuristics have
been proposed to automatically identify bot contributions [1, 23, 30]. BIMAN [23]
relies on bot naming conventions, repetitiveness in commit messages, and features
related to files changed in commits. BoDeGHa [30] relies on comment patterns
in issue and PR comments in GitHub repositories, based on the assumption that
bots tend to use different and fewer comment patterns than humans. BotHunter [1]
additionally relies on features corresponding to profile information (e.g., account
name) and account activity (e.g., median daily activity) to identify bot accounts

2 https://github.com/marketplace?type=apps.
3 https://github.com/renovatebot/renovate.

https://github.com/marketplace?type=apps
https://github.com/marketplace?type=apps
https://github.com/marketplace?type=apps
https://github.com/marketplace?type=apps
https://github.com/marketplace?type=apps
https://github.com/marketplace?type=apps
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate

8 The GitHub Development Workflow Automation Ecosystems 191

Fig. 8.1 Example of multiple bots interacting within the same PR

192 M. Wessel et al.

more accurately. BoDeGiC [31] allows to detect bots in git repositories based on
commit messages and has been trained using the classification model of BoDeGHa.

An important challenge when identifying automated contributions by bots is the
presence of so-called mixed accounts—accounts used by a human developer and a
bot in parallel—exhibiting both human-like and bot-like behavior [30]. Not properly
detecting such cases is likely to lead to false positives and false negatives during bot
detection, which may affect the outcome of empirical analyses. Cassee et al. [9]
have shown that existing classification models are not suitable to reliably detect
mixed accounts.

8.2.2 The Role of Bots in GitHub’s Socio-technical Ecosystem

An important characteristic of bots is that they form an integral part of GitHub’s
socio-technical ecosystem of collaborative software development. To consider
them as such, we adopt an ecosystemic and socio-technical viewpoint, similar to
Constantinou and Mens [14] who viewed a software ecosystem as a socio-technical
network that is composed of a combination of technical components (e.g., software
projects and their source code history) and social components (e.g., contributor and
communities involved in the development and maintenance of the software).

An interesting novelty of bots is that while they are technical components
themselves (since they are executable software artifacts), they should also be
considered as being social components, since they play a crucial role in the social
aspects of the ecosystem. The assistance provided by bots, as new voices in
the development conversation [45], has the potential to smooth and improve the
efficiency of developers’ communication. Wessel et al. [60] have shown that the
number of human comments decreases when using bots, which usually implies
that the number of trivial discussions decreases. Indeed, bots are meant to relieve,
augment, and support the collaborative software development activities that are
carried out by the human contributors that jointly develop and maintain large
software projects. Moreover, bots often interact with human collaborators (and with
other bots) using the same interface as humans do.

Figure 8.2 illustrates an exemplary case of the role that bots play in this
socio-technical ecosystem. A human contributor submits a PR to add tests to a
particular project module. The first bot to react to the PR, changeset-bot,
verifies whether the changeset file was updated, and the proposed change will be
released into a specific version of the packages implemented in the repository.
Then, vercel bot deploys the code to the third-party application Vercel and
provides a URL for the developers to inspect a deployment preview in the PR. Next,
the codesandbox-ci bot provides the URL of an isolated test environment to
validate the changes made in the PR. Finally, the human project maintainer approves
the changes, reacts with a comment, and merges the PR.

Like the many roles human software developers can fulfill, a variety of bots
have become highly active actors in every phase of the development automation

8 The GitHub Development Workflow Automation Ecosystems 193

Fig. 8.2 Example of an interaction between two humans and three bots within a single PR

194 M. Wessel et al.

workflow. Thanks to the continuous efforts of practitioners and researchers, a wide
range of development bots are available for use by developers [42, 56]. Wang et al.
[56] have shown that bot usage is common practice in OSS development. Through
repository mining of 613 GitHub repositories, they found 201 different bots.
Similar to prior research by Wessel et al. [61], the authors provided a classification
of bots according to their main role in the repository. These categories include
CI/CD assistance, issue and PR management, code review support, dependency and
security management, community support, and documentation generation.

In addition to the aforementioned examples of bots, other sophisticated bots
have been proposed in the literature. Wyrich and Bogner [64], for example,
proposed a bot that automatically refactors the source code of a project. Their
goal was to eliminate the need for developers to manually find and correct code
smells, as this task can be very time-consuming and may require certain expertise.
Therefore, the bot was designed to act autonomously, integrating into the natural
workflow of the development team on GitHub. The bot makes code changes
corresponding to proposed code refactorings and submits a PR with these changes.
Project maintainers can review these changes and decide to integrate them into the
codebase.

8.2.3 Advantages of Using Development Bots

Development bots generally execute tasks that would otherwise have to be per-
formed manually by humans. Through interviews with industry practitioners,
Erlenhov et al. [26] found that bots are used either because they improve produc-
tivity or enable activities that are not realistically feasible for humans [26]. Some
software practitioners stress that bots are able to carry out certain tasks better
than humans due to their availability, scalability, and capacity to process large
amounts of data [26]. For example, bots can handle tasks continuously 24/7 without
ever needing to take a break. Song and Chaparro [51] designed BEE, a bot that
automatically analyzes incoming issues on GitHub repositories and immediately
provides feedback on them. Due to BEE’s prompt reaction, issue reporters can
more quickly gain a general idea of what is missing without waiting for the project
maintainers’ feedback. Bots also scale, increase consistency, and mitigate human
errors. In terms of productivity increase, bot usage is frequently motivated by
the necessity of spending less time on routine, time-consuming, or tedious tasks.
Automating such activities through bots allows developers to focus on their core
code development and review tasks [26, 53]. Mirhosseini and Parnin [44] analyzed
automated PRs created by greenkeeper, a bot to update dependencies, similar
to the ones created by dependabot. Such a bot avoids manually monitoring for
new releases in the packages. The results show that OSS repositories that use the
bot upgraded the dependencies 1.6 times more regularly than repositories that did
not use any other bots or tools.

8 The GitHub Development Workflow Automation Ecosystems 195

Specifically in the context of code reviews, Wessel et al. [59] carried out
a survey with 127 software project developers to investigate the advantages of
adopting bots to support code review activities. Their study confirmed the results
of Erlenhov et al. [26]. The main reasons for adopting bots are related to improving
developer feedback, automating routine tasks, and ensuring high-quality standards.
Interestingly, developers also report benefits related to interpersonal relationships.
According to the surveyed developers, negative feedback in an automatic bot report
feels less rude or intimidating than if a human would provide the same feedback.
They also report that by providing quick and constant feedback, bots reduce the
chance that a PR gets abandoned by its author.

Bots can also help to support developers unfamiliar with a software project or
with specific software engineering practices and technologies. For example, Brown
and Parnin [8] propose a bot to nudge students toward applying better software
engineering practices. They designed a bot that provides daily updates on software
development processes based on students’ code contributions on GitHub. They show
that such a bot can improve development practices and increase code quality and
productivity.

The use of bots to automate development workflows can also result in a change
in the habits of project contributors. Wessel et al. [58] investigated how activity
traces change after the adoption of bots. They observed that after bot adoption,
projects have more merged PRs, fewer comments, fewer rejected PRs, and faster
PR rejections. Developers explain that some of these observed effects are caused by
increased visibility of code quality metrics, immediate feedback, test automation,
the increased confidence in the process, change in the discussion focus, and the fact
that bot feedback pushes contributors to take action.

In summary, the literature suggests that developers who employ bots primar-
ily expect improved productivity [26, 59]. This, however, surfaces in different
ways depending on the context and the tasks the bot performs. Automating
time-consuming or tedious tasks and collecting dispersed information (i.e.,
information gathering) are some ways to improve productivity. Developers also
emphasize that bots may perform some tasks better than humans (e.g., handling
tasks 24/7 and at scale, increasing consistency, and mitigating human error).

8.2.4 Challenges of Using Development Bots

Despite the numerous benefits leveraged by using development bots, several
challenges have been reported concerning the workflow automation provided by
them [26, 63]. Some bots have been studied in detail, revealing the challenges and
limitations of their PR interventions [7, 44, 46].

Trust Trusting a bot to act appropriately and reliably is challenging [26]. A side
effect of overly relying on bots is that humans no longer question whether these
bots are taking the correct actions since they assume bots to be experts in their tasks.

196 M. Wessel et al.

Therefore, developers can be caught off guard by excessive incorrect outcomes from
bots [26]. A key solution to increase trust is building a reliable testing environment
that allows developers to try out bots and avoid unanticipated problems.

Discoverability and Configuration To confirm the challenges caused by devel-
opment bots in PR interactions, Wessel et al. [63] interviewed 21 practitioners.
Their study revealed several challenges raised by bot usage, such as discoverability
and configuration issues. Developers complained about the lack of contextualized
actions, limited and burdensome configuration options, and technical overhead to
host and deploy their own bot. Moreover, the overload of information generated by
bots when interacting on PRs has appeared as the most prominent challenge.

Interruption and Noise Developers constantly struggle with interruptions and
noise produced by bots [26]. For instance, Brown and Parnin [7] analyzed
tool-recommender-bot, a bot that automatically configures a project to
use an open-source static analysis tool for Java code and then submits a PR with a
generic message explaining how the proposed tool works. They reported that this
bot still needs to overcome problems such as notification workload. They applied
tool-recommender-bot in real projects for evaluation purposes. Only two
PRs out of 52 proposed recommendations were accepted. Peng and Ma [46]
studied how developers perceive and work with mention bot, a reviewer
recommendation bot created by Facebook. It automatically tags a potential reviewer
for a PR depending on the files changed. Project maintainers with higher expertise
(i.e., maintainers who contributed more frequently) in a particular file are more
likely to be suggested as reviewers by the bot. The study found that mention
bot reduced contributors’ effort in identifying proper reviewers. As a negative side
effect, however, developers were bothered by frequent review notifications when
dealing with a heavy workload.

Wessel et al. [63] introduced a theory about how certain bot behaviors can
be perceived as noisy. Indeed, many bots provide several comments when an
issue or PR is opened by a contributor, with dense information and frequently
overusing visual elements. Similarly, bots perform repetitive actions such as creating
numerous PRs (e.g., to update the many dependencies a project can have) and
leaving dozens of comments in a row (e.g., to report on test coverage each time
a new commit is added to the PR). These situations can lead to information
and notification overload, disrupting developers’ communication. Oftentimes, the
problem is not a singular bot that is too verbose, but a combination of multiple bots
that are simultaneously active and, together, lead to information overload [26].

Researchers have attempted to create solutions to reduce the information over-
load created by bots. Wessel et al. [57] suggested creating better ways to represent
the information of bots, such as clearer summaries of pull requests. Ribeiro
et al. [47] implemented FunnelBot that integrated these suggestions. Figure 8.3
shows an example of a PR comment posted by FunnelBot. The comment shows
(A) an introductory message, (B) a list with all groups of bot messages collapsed,
and (C) one expanded example where we can see the CodesandBox comment.

8 The GitHub Development Workflow Automation Ecosystems 197

Fig. 8.3 Example of PR comment created by FunnelBot

8.3 Workflow Automation Through GitHub Actions

As explained in Sect. 8.1.4, software development workflows can be automated
using different techniques, including CI/CD solutions (presented in Sect. 8.1.3) and
development bots (presented in Sect. 8.2). The third way is GitHub Actions, which is
the focus of the current section. We explain what GitHub Actions are, how prevalent
they are, and how they constitute an ecosystem of their own. We also discuss the
potential challenges this novel ecosystem is confronted with.

8.3.1 What Is GitHub Actions?

The GitHub social coding platform has introduced GitHub Actions as a way to
enable the specification and execution of automated workflows. It started as a
beta product in 2018 providing the possibility to create Actions inside containers
to augment and connect software development workflows. When the product was
officially released to the public in November 2019, GitHub Actions also integrated a
fully featured CI/CD service, answering the high demand of GitHub users to provide
CI/CD support similar to what was already available in competing social coding
platforms such as GitLab and Bitbucket [16].

Since its introduction, GitHub Actions has become the dominant CI/CD service
on GitHub based on a quantitative study by Golzadeh et al. [32], including more
than 90K GitHub repositories. Figure 8.4 provides a historical overview of CI/CD
usage in those repositories, starting from the first observation of Travis usage in June
2011. Initially, GitHub repositories primarily used Travis as a CI/CD service. Over

198 M. Wessel et al.

Fig. 8.4 Evolution of the proportion of GitHub repositories using a specific CI/CD solution

time, other CI/CD solutions were used, but Travis remained the dominant CI/CD.
When GitHub Actions entered the CI/CD landscape, it overtook the other CI/CD
solutions in popularity in less than 18 months after its introduction. Mazrae et al.
[43] complemented this quantitative analysis by qualitative interviews to understand
the reasons behind GitHub Actions becoming the dominant CI/CD tool in GitHub,
as well as why project maintainers decided to migrate to GitHub Actions primarily.
The main reported reasons were the seamless integration into GitHub, the ease of
use, and great support for its reusable Actions.

GitHub Actions allows repository maintainers to automate a wide range of tasks.
In addition to providing typical CI/CD services such as building code, executing
test suites, and deploying new releases, GitHub Actions’ tight integration with
GitHub enables it to include better support of third-party tools and build support
for well-known operating systems and hardware architectures, and more scalable
cloud-based hardware to produce results faster. GitHub Actions also facilitates the
communication between the project and external tools (such as third-party CI/CD
services) and easier dependency and security monitoring and management [22].

Specifying Executable Workflows GitHub Actions is based on the so-called
concept of executable workflows that can be defined by maintainers of GitHub
repositories. The structure of a workflow is schematically presented in Fig. 8.5 and
explained below.

A workflow constitutes a configurable automated process that is defined by
a YAML file added to the .github/workflows directory of the GitHub
repository. A workflow can be executed based on events specified in the workflow
description that act as a trigger for running the workflow. Examples of such triggers
are commits, issues, PRs, comments, schedules, or even manual invocation [11].
The example workflow in Listing 8.1 (lines 3–6) defines three possible triggers:
upon committing (push:) or receiving a PR (pull_request:), or based on a
specified time schedule (cron: "0 6 * * 1").

8 The GitHub Development Workflow Automation Ecosystems 199

repository

workflow 3workflow 2

step 3

job 1

workflow 1

job 2 job 3

workflows

jobs

steps

repository

Parallel

Parallel by default /
sequential

Sequential

.github/workflows/

strategy

step 2step 1

use: (action) run: (shell cmd) use: (action)

Fig. 8.5 Schematic representation of the structure of a GitHub workflow description

A workflow typically runs one job in some virtual environment that is created
to execute the job (e.g., an instance of some specific version of Ubuntu, macOS,
or Microsoft Windows). A workflow can also execute multiple jobs, in parallel (by
default) or sequentially. Workflows can define a matrix strategy to automatically
create and run parallel jobs based on the combination of variable values defined
by the matrix. This is, for example, useful if one would like to build and test
source code in multiple versions of a programming language and/or on multiple
operating systems. In the example of Listing 8.1, the matrix strategy (lines 10–13)
specifies that the job will be run on five different versions of Python for two different
operating systems.

To run a workflow specified in a GitHub repository, developers can use the
infrastructure provided by GitHub, or rely on self-hosted runners if more specific
hardware or operating systems are needed. Each job is composed of a series of
steps that specify the tasks to be executed sequentially by the job. These steps can
be simple shell commands to be run within the virtual environment (such as lines
22–24 in Listing 8.1). Alternatively, steps can use and execute predefined reusable
Actions, which will be discussed below.

200 M. Wessel et al.

Listing 8.1 Example of a YAML workflow file

1 name: Test project
2 on:
3 push:
4 pull_request:
5 schedule:
6 - cron: "0 6 * * 1"
7 jobs:
8 build-and-test:
9 strategy:

10 matrix:
11 os: [ubuntu-22.04, windows-latest]
12 python: ["3.6", "3.7", "3.8", "3.9", "3.10"]
13 runs-on: ${{ matrix.os }}
14 steps:
15 - uses: actions/checkout@v2
16 - name: Set up Python
17 uses: actions/setup-python@v2
18 with:
19 python-version: ${{ matrix.python }}
20 - name: Install dependencies
21 run: |
22 pip install -r requirements.txt
23 pip install pytest
24 - name: Execute tests
25 run: pytest

Reusable Actions Actions provide a reuse mechanism for GitHub workflow
maintainers to avoid reinventing the wheel when automating repetitive activi-
ties [12]. Rather than manually defining the sequence of commands to execute
as part of a step (such as lines 22–24 in Listing 8.1), it suffices to use a
specific (version of a) reusable Action. For example, line 16 in Listing 8.1
(re)uses version 2 of actions/checkout, and line 18 (re)uses version 2 of
actions/setup-python. Actions are themselves developed through GitHub
repositories.4

Workflows can reuse any Action shared in a public repository. To facilitate
finding such Actions, the GitHub Marketplace provides an interface for providers to
promote their Actions and for consumers to easily search for suitable Actions.5 The
number of Actions promoted on the Marketplace has been growing exponentially.
By December 2022, the Marketplace listed over 16K reusable Actions falling

4 The GitHub repositories for the Actions reused in Listing 8.1 are https://github.com/actions/
checkout and https://github.com/actions/setup-python.
5 See https://github.com/marketplace. In addition to Actions, the marketplace also promotes Apps,
which are applications that can contain multiple scripts or an entire application.

https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/marketplace
https://github.com/marketplace
https://github.com/marketplace
https://github.com/marketplace

8 The GitHub Development Workflow Automation Ecosystems 201

under 19 different categories. These categories contain a wide diversity of Actions,
covering tasks such as setting up a specific programming language environment,
publishing a release on a package registry, running tests, or checking the code
quality [22].

8.3.2 Empirical Studies on GitHub Actions

Given that GitHub Actions was publicly introduced in 2019, and despite the fact that
GitHub Actions has become the dominating CI/CD solution on GitHub (according
to Golzadeh et al. [32]), very few empirical studies have focused on GitHub Actions
at the time of writing this chapter.

An early quantitative study by Kinsman et al. [40] in 2021 reported that in a
dataset of 416,266 GitHub repositories, only as little as 3190 repositories (i.e.,
less than 1%) had been using GitHub Actions. In 2022, Wessel et al. [62] studied
a dataset composed of the 5000 most-starred GitHub repositories and observed
that 1489 projects (i.e., 29.8%) had been using GitHub Actions. Also in 2022,
Decan et al. [22] reported on a dataset of 67,870 active GitHub repositories in
which 29,778 repositories (i.e., 43.9%) had been using GitHub Actions. These
quantitative results reveal that GitHub Actions is prevalent in software development
repositories on GitHub. To complement these quantitative findings, in 2023, Saroar
and Nayebi [48] carried out a survey with 90 GitHub developers about the best
practices and perception in using and maintaining GitHub Actions.

Table 8.1 reports the top six programming languages that most frequently
coincide with GitHub Actions usage according to Decan et al. [22]. They observed
that some programming languages are more likely to coincide with GitHub Actions
usage than others: TypeScript and Go have a higher proportion of repositories
resorting to GitHub Actions usage (58.5% and 57.2%, respectively) compared to
JavaScript (34.9%). It is worth noting that the percentages of repositories using
GitHub Actions are reported with respect to the language itself. For example,
the number of Python repositories using GitHub Actions is 1.52 times higher

Table 8.1 Top six languages with the highest proportion of GitHub
repositories using GitHub Actions according to [22]

GitHub repositories
programming language all repositories using GitHub Actions

JavaScript 13,542 (19.6%) 4730 (34.9%)

Python 12,319 (17.8%) 5654 (45.9%)

TypeScript 6362 (9.2%) 3722 (58.5%)

Java 6105 (8.8%) 2390 (39.2%)

C.++ 5701 (8.2%) 2331 (40.9%)

Go 4988 (7.2%) 2854 (57.2%)

202 M. Wessel et al.

(5654) than the TypeScript repositories using GitHub Actions (3722). One can also
observe the number of repositories for a specific language and its proportion to
all the repositories in the dataset. For example, the 13,542 JavaScript repositories
correspond to 19.6% of all the repositories in the dataset.

The same study also analyzed which event types are mostly used for triggering
workflows, reporting that push: and pull_request: are the most frequent
events triggering workflows, both used by more than half (63.4% and 56.3%,
respectively) of all considered GitHub repositories relying on workflows. This is not
surprising since commits and PRs are the most important activities in collaborative
coding on GitHub. The most frequently used Action is actions/checkout
(used by 35.5% of all steps and 97.8% of all repositories). Other frequently
used Actions are related to the deployment of a specific programming language
environment (e.g., setup-node, setup-python, setup-java). Overall,
24.2% of all steps use an Action of the form setup-*.

Finally, they observe that it is common practice to depend on reusable Actions,
given that nearly all repositories (.>99%) that use workflows have at least one step
referring to an Action. More than half of the steps in all analyzed workflows (51.1%)
use an Action. However, this reuse is concentrated toward a limited set of Actions.
For example, the Actions that are officially provided by GitHub (i.e., those actions
of the form actions/*) account for 71.7% of all steps that reuse an Action. In
addition to this, the Actions being reused tend to be concentrated in a few categories.
Table 8.2 provides the top five categories of Actions used by GitHub repositories,
as reported by two independently conducted empirical studies [22, 62]. Most of the
reused actions belong to the “Utilities” and “Continuous Integration” categories,
followed by “Deployment.” This suggests that GitHub Actions is being used mostly
to automate the same kinds of activities as what traditional CI/CD tools are being
used for.

Wessel et al. [62] statistically studied the impact of using workflows on different
aspects of software development like PRs, commit frequency, and issue resolution
efficiency. By comparing the activities in projects using GitHub Actions, during one
full year before the use of GitHub Actions in the project and one full year after
its usage, they used the technique of regression discontinuity analysis to provide
statistical evidence and showed that after adding GitHub Actions to projects, there
tend to be fewer accepted PRs, with more discussion comments and fewer commits,

Table 8.2 Top five most frequent Action categories according to [22, 62]

Action category % reported by [62] % reported by [22]

utility 24.9% 23.9%

continuous integration 24.7% 17.3%

deployment 9.6% 7.2%

publishing 8.4% 6.9%

code quality 7.7% 6.1%

8 The GitHub Development Workflow Automation Ecosystems 203

which take more time to merge. On the other hand, there are more rejected PRs,
which contain fewer comments and more commits.

Wessel et al. [62] studied discussions between developers about the usage of
GitHub Actions in their software projects. Out of the 5000 analyzed GitHub
repositories, only 897 (18%) had the Discussions feature enabled at the time of
data collection, and 830 of those (17%) contained at least one discussion thread.
Focusing on this subset of repositories, they filtered the discussions containing
the string “GitHub Actions,” resulting in 573 posts in 458 distinct threads of 148
repositories. The most discussed material about GitHub Actions, found in 28.8% of
all considered posts, was the need for help with GitHub Actions. This reveals that
developers actively sought to learn more about how to use workflows effectively. A
second popular category of discussion in the context of GitHub Actions, found in
19.0% of all considered posts, was error messages or debug messages. Developers
were trying to solve issues related to using workflows and applications invoked
via these workflows, such as linters or code review bots. A third popular category,
accounting for 14.6% of all considered posts, involved discussions around reusing
Actions. This is expected, given that Actions are a relatively new concept that many
developers are not familiar with.

8.3.3 The GitHub Actions Ecosystem

As mentioned in Sect. 8.1.4, GitHub Actions is part of the larger workflow automa-
tion ecosystem of GitHub that also includes bots and CI/CD solutions for automat-
ing development workflows in collaborative software projects. Decan et al. [22]
suggested that GitHub Actions can and should be considered as a new emerging
ecosystem in its own right. Indeed, the GitHub Actions technology exhibits many
similarities with more traditional software packaging ecosystems such as npm (for
JavaScript), Cargo (for Rust), Maven (for Java), or PyPI (for Python), to name
but a few. Just as software development repositories on GitHub tend to depend
on external packages distributed through the above package managers—mainly to
avoid the effort-intensive and error-prone practices of copy-paste reuse—the same
is valid for development workflows. Maintainers of GitHub repositories can specify
their workflows to directly depend on reusable Actions. As such, GitHub Actions
forms a kind of dependency network that bears many similarities with the ones
of software packaging ecosystems [18]. The parallel with packaging ecosystems
is quite obvious: automated workflows, as software clients, express dependencies
toward Actions (being the equivalent of reusable packages) that can exist in different
versions or releases. Section 8.3.2 reported on quantitative evidence that resorting
to reusable Actions in workflows has become a common practice.

Continuous Growth Decan et al. [18] carried out a quantitative empirical analysis
of the similarities and differences in the evolution of the dependency networks for
seven different packaging ecosystems of varying sizes and ages, including Cargo,

204 M. Wessel et al.

Fig. 8.6 Evolution of the number of GitHub repositories using workflows (blue line) and the
number of Actions used by these repositories (orange line, scaled by a factor of 10 for ease of
comparison)

CPAN, CRAN, npm, NuGet, Packagist, and RubyGems. They observed that these
dependency networks tend to grow over time, both in size and in number of package
updates. While the vast majority of packages depend on other packages, only a small
proportion of these packages account for most of the reuse (i.e., they are targeted
by most of the reverse dependencies). Decan et al. [22] conducted a quantitative
analysis of GitHub Actions and observed similar characteristics for the GitHub
Actions dependency network: nearly all the repositories with GitHub Actions
workflows depend on reusable Actions, and most of the reuse is concentrated
in a limited number of Actions. They analyzed the evolution of the number of
repositories using GitHub Actions workflows and the number of Actions being used
by these repositories. Figure 8.6 shows this evolution for the period 2020–2021,
revealing a continuous growth of the GitHub Actions ecosystem, in terms of the
number of consumers (repositories using GitHub Actions workflows) as well as
producers (Actions being reused by GitHub repositories).

8.3.4 Challenges of the GitHub Actions Ecosystem

While packaging ecosystems are extremely useful for their respective communities
of software developers, they have been shown to face numerous challenges related
to dependency management [21, 41, 52], outdatedness [19], security vulnerabili-
ties [20, 69], breaking changes [17, 24], deprecation [13], and abandonment of
package maintainers [4, 14]. We posit that GitHub Actions will suffer (and likely
suffers already) from similar issues.

Outdatedness Software developers are continuously confronted with the difficult
choice of whether, when, and how to keep their dependencies up to date. On the one
hand, updating a dependency to a more recent version enables them to benefit from

8 The GitHub Development Workflow Automation Ecosystems 205

the latest bug and security fixes. On the other hand, doing so exposes the dependent
project to an increased risk of breaking changes, as well as to new bugs or security
issues that may not even have been discovered yet.

The concept of technical lag was proposed to measure the extent to which
a software project has outdated dependencies [33]. This lag can be quantified
along different dimensions: as a function of time (how long has a dependency
been outdated), version (how many versions is a dependency behind), stability
(how many known bugs could have been fixed by updating the dependency), and
security (how many security vulnerabilities could have been addressed by updating
the dependency). Zerouali et al. [67] formalized this concept in a measurement
framework that can be applied at the level of packaging ecosystems. In particular,
they analyzed the technical lag of the npm packaging ecosystem, observing that
around 26% of the dependencies expressed by npm packages are outdated and
that half of these outdated dependencies target a version that is .270+ days older
than the newer one. Other researchers have also applied technical lag to quantify
outdatedness in software package dependency networks [19, 54]. The technical
lag framework was also applied to the ecosystem of Docker containers distributed
through Docker Hub [68]. Chapter 9 provides more details on this matter.

In a similar vein, applying the technical lag framework to the GitHub Actions
ecosystem would allow workflow developers to detect and quantify the presence
of outdated Actions in workflows and help in updating them. It is important to do
so since, despite the recency of GitHub Actions, according to Decan et al. [22], at
least 16% of the dependencies in workflows are targeting an old major version of an
Action.

Adherence to Semantic Versioning Semantic Versioning (abbreviated to SemVer
hereafter) is another mechanism that has been proposed to assist software developers
with the delicate trade-off between benefiting from security or bug fixes and being
exposed to breaking changes in dependencies. SemVer introduces a set of simple
rules that suggest how to assign version numbers in packages to inform developers
of dependent software about potentially breaking changes. In a nutshell, SemVer
proposes a three-component version scheme major.minor.patch to specify the type
of changes that have been made in a new package release. Many software packaging
ecosystems (such as npm, Cargo, and Packagist) are mostly SemVer compliant,
in that most of their package producers adhere to the SemVer convention [17].
Backward-incompatible changes are signalled by an update of the major compo-
nent, while supposedly compatible changes come with an update of either the minor
or patch component. This allows dependent packages to use so-called dependency
constraints to define the range of acceptable versions for a dependency (e.g., it would
be safe to accept all dependency updates within the same major version range if the
dependency is trusted to be SemVer compliant).

Maintainers of GitHub Actions workflows are exposed to a similar risk of incom-
patible changes in the Actions they use, whether these are logical changes (affecting
the behavior of the Actions) or structural changes (affecting the parameters or
return values). Therefore, knowing whether an Action adheres to SemVer is helpful

206 M. Wessel et al.

for maintainers of workflows depending on these actions, since they can assume
minor and patch updates to be backward compatible and, therefore, free of breaking
changes. GitHub recommends reusing Actions in workflows by specifying only the
major component of the Action’s version, allowing workflow maintainers to receive
critical fixes and security patches while maintaining compatibility. However, little is
known about the actual versioning practices followed by producers and consumers
of Actions. Preliminary results suggest that GitHub’s recommendation is widely
followed since nearly 90% of the version tags used to refer to an Action include
only a major component [22]. However, unlike package managers, GitHub Actions
offers no support for dependency constraints, implying that producers of Actions are
required to move these major version tags each time a new version of the Action is
released. Unless automated, this requirement introduces an additional burden on the
Action producers [22] and calls for a more profound analysis of the kind of changes
made in Action updates and of the versioning practices they follow.

Security Vulnerabilities Another issue is that any software project is subject
to security vulnerabilities. Package dependency networks have made the attack
surface of such vulnerabilities several orders of magnitude higher due to the
widespread dependence on reusable software libraries that tend to have deep
transitive dependency chains [2, 20, 25, 69]. For example, through a study of 2.8K
vulnerabilities in the npm and RubyGems packaging ecosystems, Zerouali et al. [66]
found around 40% of the packages to be exposed to a vulnerability due to their
(direct or transitive) dependencies, and it often took months to fix them. They also
observed that a single vulnerable package could expose up to two-thirds of all the
packages depending on it.

We see no reason why the GitHub Actions ecosystem would be immune to this
phenomenon. Indeed, relying on reusable Actions from third-party repositories or
even from the Marketplace further increases the vulnerability attack surface. Since
a job in a workflow executes its commands within a runner shared with other jobs
from the same workflow, individual jobs in the workflow can compromise other
jobs they interact with. For example, a job could query the environment variables
used by a later job, write files to a shared directory that a later job processes,
or even more directly interact with the Docker socket and inspect other running
containers and execute commands in them.6 Multiple examples of security issues in
workflows have been reported, sometimes with potentially disastrous consequences,
such as manipulating pull requests to steal arbitrary secrets,7 injecting arbitrary code
with workflow commands,8 or bypassing code reviews to push unreviewed code.9

Unfortunately, we are not aware of any publicly available quantitative analysis
on the impact of reusable Actions on security vulnerabilities in software projects.

6 https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#
using-third-party-actions.
7 https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html.
8 https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html.
9 https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7.

https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7

8 The GitHub Development Workflow Automation Ecosystems 207

This shows that there is an urgent need for further research as well as appropriate
tooling to support developers of reusable Actions and workflows in assessing and
hardening their security. A first step in this direction is GitHub’s built-in dependency
monitoring service Dependabot, which has started to support GitHub Actions
workflows in January 2022 and reusable Actions in August 2022.10

Abandonment and Deprecation Another important challenge that packaging
ecosystems face is the risk of packages becoming unmaintained or deprecated [13]
when some or all of their core contributors have abandoned the package develop-
ment [4, 14, 39]. If this happens, the packages may become inactive, implying that
bugs and security vulnerabilities will no longer be fixed. This will propagate to
dependent packages that rely on such packages. Cogo et al. [13] have studied the
phenomenon of package deprecation in the npm packaging ecosystem, observing
that .3.2% of all releases are deprecated, .3.7% of the packages have at least
one deprecated release, and .66% of the packages with deprecated releases are
fully deprecated. Constantinou et al. [14] studied the phenomena of developer
abandonment in the RubyGems and npm packaging ecosystems to determine the
characteristics that lead to a higher probability of abandoning the ecosystem.
Developers were found to present such a higher risk if they do not engage in
discussions with other developers, do not have strong social and technical activity
intensity, communicate or commit less frequently, and do not participate in both
technical and social activities for long periods of time. Avelino et al. [4] carried
out a mixed-methods study to investigate project abandonment in popular GitHub
projects, revealing that some projects recovered from the abandonment of key
developers because they were taken over by new core maintainers that were aware
of the project abandonment risks and had a clear incentive for the project to survive.

Since Actions are reusable software components being developed in GitHub
repositories, the GitHub Actions ecosystem is likely to suffer from this risk of
abandoning developers and the presence of unmaintained or obsolete Actions.
This calls for studies to quantify this phenomenon and mechanisms to avoid
abandonment or to provide solutions to overcome the negative effects of such
abandonment. Examples of such solutions could be finding the right replacement
for abandoning developers in Action repositories or suggesting consumers of
unmaintained Actions to migrate to alternative Actions.

Beyond GitHub Actions The exposure of GitHub Actions to the well-known
issues that packaging ecosystems face is all the more worrying because they are
not limited to the GitHub Actions ecosystem but may also affect other packag-
ing ecosystems. Conversely, the GitHub Actions ecosystem may be affected by
issues coming from packaging ecosystems. This situation is depicted in Fig. 8.7:
GitHub hosts the development repositories of many software projects distributed
in packaging ecosystems. These development repositories may define automated

10 https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/.

https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/
https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/

208 M. Wessel et al.

software
packages

Actions

software
repositories

developed in

depend on

depending on

packaging ecosystem

publish

workflows

use

rely on

Fig. 8.7 Interweaving of the GitHub Actions ecosystem and software packaging ecosystems

workflows relying on reusable Actions. The Actions themselves are also developed
in (and directly accessed through) GitHub repositories. Since Actions are software
components developed in some programming language (mostly in TypeScript
currently), they may depend on reusable packages or libraries distributed in package
registries such as npm.

This potentially strong interconnection between GitHub Actions and packaging
ecosystems is not without practical consequences given the issues that these
ecosystems may face. Instead of being mostly limited to their own ecosystem, issues
affecting either packages or Actions may cross the boundaries and propagate to the
other software ecosystems they are interwoven with.

Consider, for example, a reusable Action affected by a security vulnerability.
To start with, this vulnerability may compromise all the workflows relying on
the affected Action. Next, it may also compromise the development repositories
in which these workflows are executed. By extension, it may also affect all the
software projects developed in these repositories. In turn, these projects may
affect all the dependent packages that use them and so on. For example, the
action-download-artifact Action, used by several thousands of reposito-
ries, was found to expose workflows using it to code injection attacks.11 Conversely,
Actions may depend on vulnerable packages distributed in a packaging ecosystem
such as npm. As a consequence, issues affecting these packages may propagate to
the Actions using them and may in turn propagate to the workflows and development
repositories relying on these Actions.

In summary, many of the issues that software packaging ecosystems have been
shown to face also apply directly or indirectly to the GitHub Actions ecosystem.

11 https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-
attacks.

https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks

8 The GitHub Development Workflow Automation Ecosystems 209

Even worse, given that both kinds of ecosystems are tightly interwoven, issues
in either ecosystem can and will propagate across ecosystem boundaries, which
may lead to a significantly increased exposure to vulnerabilities and other socio-
technical health issues. This raises the urgent need to conduct empirical research for
understanding the extent of these issues, analyze their impact and propagation, and
provide tool support for helping repository, package, and workflow maintainers.

8.4 Discussion

This chapter focused on the emerging ecosystems of development workflow
automation in the GitHub social coding platform, consisting of the socio-technical
interaction with bots (automated software development agents), and the workflow
automation offered through GitHub Actions. Combined together, GitHub’s socio-
technical ecosystem comprises human contributors, bots, workflows and reusable
actions, GitHub Apps,12 and all of the GitHub repositories in which these
technologies are being developed and used. It also comprises external CI/CD
services or other development automation tools that may be used by these GitHub
repositories. In addition to this, there is a tight interweaving with software packaging
ecosystems, since software packages may be developed using bots and GitHub
Actions, and the development of bots and Actions may depend on software
packages. We have argued that the intricate combination of workflow automation
solutions constitutes an important and increasing risk that exposes the involved
repositories—and, by extension, the software products they generate or that depend
on them—to vulnerabilities and other socio-technical issues. Similar issues are
likely to apply to other social coding platforms (e.g., GitLab and Bitbucket) for the
same reasons as in GitHub, even though the workflow automation solutions and
technologies in those platforms may be different.

We also argued that bots play an important role in the social fabric of the GitHub
ecosystem, since bots interact and communicate with human contributors using a
similar interface as the one used by humans (e.g., posting and reacting to comments
on issues, PRs, code reviews, and commits in repositories). Actions, on the other
hand, are more commonly used to automate technical tasks such as executing test
suites and deploying packages. This was quantitatively observed by Decan et al.
in [22].

However, the boundaries between the bot ecosystem and the GitHub Actions
ecosystem are becoming more and more diffuse. For instance, nothing prevents bots
from directly using the functionality offered by Actions (e.g., a bot could trigger
the execution of a workflow using Actions that run test suites). Similarly, an Action
may instruct a bot to interact with developers and users (e.g., a code coverage Action
may report its results through some GitHub badge, issue, or PR comment).

12 https://docs.github.com/en/developers/apps.

https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/apps

210 M. Wessel et al.

Existing workflow automation solutions were already offered through a wide
variety of channels for GitHub, for example, through CI/CD services, external bots,
dedicated web interfaces, or GitHub Apps. The introduction of GitHub Actions
has further increased the overlap between the possible automation services. For
instance, some automation services that used to be offered through bots or GitHub
Apps have now become available as Actions as well. An example is the GitHub App
the-welcome-bot for welcoming newcomers, a task for which more recently
a GitHub Action wow-actions/welcome has become available. Two other
examples are the renovate dependency update service and the codecov code
coverage analysis that used to be available through web services and GitHub Apps,
and more recently codecov has become offered as a GitHub Action as well. Going
one step further, dependabot, which used to be an independent bot service, has
now become fully integrated into the GitHub platform.

All these examples illustrate that bots, Apps, Actions, and external services will
continue to coexist side by side as part of the development workflow ecosystem.
It is yet unclear to which extent GitHub repositories are using a combination of
workflow automation solutions, or to which extent they tend to migrate from one
solution to another. Hence, empirical studies that shed a deeper insight into this
rapidly expanding ecosystem are urgently needed.

Acknowledgments This work is supported by the ARC-21/25 UMONS3 Action de Recherche
Concertée financée par le Ministère de la Communauté française - Direction générale de
l’Enseignement non obligatoire et de la Recherche scientifique, as well as by the Fonds de
la Recherche Scientifique - FNRS under grant numbers O.0157.18F-RG43, T.0149.22, and
F.4515.23.

References

1. Abdellatif, A., Wessel, M., Steinmacher, I., Gerosa, M.A., Shihab, E.: BotHunter: an approach
to detect software bots in GitHub. In: International Conference on Mining Software Repos-
itories (MSR), pp. 6–17. IEEE Computer Society (2022). https://doi.org/10.1145/3524842.
3527959

2. Alfadel, M., Costa, D.E., Shihab, E., Shihab, E.: Empirical analysis of security vulnerabilities
in Python packages. In: International Conference on Software Analysis, Evolution and
Reengineering (SANER) (2021). https://doi.org/10.1109/saner50967.2021.00048

3. Arora, R., Goel, S., Mittal, R.: Supporting collaborative software development over GitHub.
Softwa. Pract. Exper. 47 (2016). https://doi.org/10.1002/spe.2468

4. Avelino, G., Constantinou, E., Valente, M.T., Serebrenik, A.: On the abandonment and survival
of open source projects: an empirical investigation. In: International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 1–12 (2019). https://doi.org/10.1109/
ESEM.2019.8870181

5. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile software
development. Tech. rep., Snowbird, UT (2001)

6. Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build: an explorative analysis of
Travis CI with GitHub. In: International Conference on Mining Software Repositories (MSR),
pp. 356–367. IEEE, Piscataway (2017). https://doi.org/10.1109/MSR.2017.62

https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1145/3524842.3527959
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1002/spe.2468
https://doi.org/10.1002/spe.2468
https://doi.org/10.1002/spe.2468
https://doi.org/10.1002/spe.2468
https://doi.org/10.1002/spe.2468
https://doi.org/10.1002/spe.2468
https://doi.org/10.1002/spe.2468
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62

8 The GitHub Development Workflow Automation Ecosystems 211

7. Brown, C., Parnin, C.: Sorry to bother you: designing bots for effective recommendations. In:
International Workshop on Bots in Software Engineering (BotSE). IEEE, Piscataway (2019).
https://doi.org/10.1109/BotSE.2019.00021

8. Brown, C., Parnin, C.: Nudging students toward better software engineering behaviors.
In: International Workshop on Bots in Software Engineering (BotSE), pp. 11–15. IEEE,
Piscataway (2021). https://doi.org/10.1109/BotSE52550.2021.00010

9. Cassee, N., Kitsanelis, C., Constantinou, E., Serebrenik, A.: Human, bot or both? A study
on the capabilities of classification models on mixed accounts. In: International Conference
on Software Maintenance and Evolution (ICSME), pp. 654–658. IEEE, Piscataway (2021).
https://doi.org/10.1109/ICSME52107.2021.00075

10. Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A.: Understanding community smells
variability: a statistical approach. In: International Conference on Software Engineering
(ICSE), pp. 77–86 (2021). https://doi.org/10.1109/ICSE-SEIS52602.2021.00017

11. Chandrasekara, C., Herath, P.: Hands-on GitHub Actions: Implement CI/CD with GitHub
Action Workflows for Your Applications. Apress (2021). https://doi.org/10.1007/978-1-4842-
6464-5

12. Chen, T., Zhang, Y., Chen, S., Wang, T., Wu, Y.: Let’s supercharge the workflows: an empirical
study of GitHub Actions. In: International Conference on Software Quality, Reliability
and Security Companion (QRS-C). IEEE, Piscataway (2021). https://doi.org/10.1109/QRS-
C55045.2021.00163

13. Cogo, F.R., Oliva, G.A., Hassan, A.E.: Deprecation of packages and releases in software
ecosystems: a case study on npm. Transactions on Software Engineering (2021). https://doi.
org/10.1109/TSE.2021.3055123

14. Constantinou, E., Mens, T.: An empirical comparison of developer retention in the RubyGems
and npm software ecosystems. Innovations Syst. Softw. Eng. 13(2), 101–115 (2017). https://
doi.org/10.1007/s11334-017-0303-4

15. Costa, J.M., Cataldo, M., de Souza, C.R.: The scale and evolution of coordination needs in
large-scale distributed projects: implications for the future generation of collaborative tools.
In: SIGCHI Conference on Human Factors in Computing Systems, pp. 3151–3160 (2011).
https://doi.org/10.1145/1978942.1979409

16. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in GitHub: transparency and
collaboration in an open software repository. In: International Conference on Computer
Supported Cooperative Work (CSCW), pp. 1277–1286. ACM (2012). https://doi.org/10.1145/
2145204.2145396

17. Decan, A., Mens, T.: What do package dependencies tell us about semantic versioning? Trans.
Softw. Eng. 47(6), 1226–1240 (2021). https://doi.org/10.1109/TSE.2019.2918315

18. Decan, A., Mens, T., Claes, M.: An empirical comparison of dependency issues in OSS
packaging ecosystems. In: International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, Piscataway (2017). https://doi.org/10.1109/SANER.2017.
7884604

19. Decan, A., Mens, T., Constantinou, E.: On the evolution of technical lag in the npm package
dependency network. In: International Conference on Software Maintenance and Evolution
(ICSME), pp. 404–414. IEEE, Piscataway (2018). https://doi.org/10.1109/ICSME.2018.00050

20. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities in the npm
package dependency network. In: International Conference on Mining Software Repositories
(MSR), pp. 181–191 (2018). https://doi.org/10.1007/s10664-022-10154-1

21. Decan, A., Mens, T., Grosjean, P.: An empirical comparison of dependency network evolution
in seven software packaging ecosystems. Empirical Softw. Eng. 24(1), 381–416 (2019). https://
doi.org/10.1007/s10664-017-9589-y

22. Decan, A., Mens, T., Mazrae, P.R., Golzadeh, M.: On the use of GitHub Actions in software
development repositories. In: International Conference on Software Maintenance and Evolu-
tion (ICSME). IEEE, Piscataway (2022). https://doi.org/10.1109/ICSME55016.2022.00029

https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/BotSE52550.2021.00010
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/1978942.1979409
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029

212 M. Wessel et al.

23. Dey, T., Mousavi, S., Ponce, E., Fry, T., Vasilescu, B., Filippova, A., Mockus, A.: Detecting
and characterizing bots that commit code. In: International Conference on Mining Software
Repositories (MSR), pp. 209–219. ACM (2020). https://doi.org/10.1145/3379597.3387478

24. Dietrich, J., Pearce, D., Stringer, J., Tahir, A., Blincoe, K.: Dependency versioning in the wild.
In: International Conference on Mining Software Repositories (MSR), pp. 349–359. IEEE,
Piscataway (2019). https://doi.org/10.1109/MSR.2019.00061

25. Düsing, J., Hermann, B.: Analyzing the direct and transitive impact of vulnerabilities onto dif-
ferent artifact repositories. Digit. Threats Res. Pract. (2021). https://doi.org/10.1145/3472811

26. Erlenhov, L., Neto, F.G.d.O., Leitner, P.: An empirical study of bots in software development:
characteristics and challenges from a practitioner’s perspective. In: Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), pp. 445–455. ACM (2020). https://doi.org/10.1145/3368089.3409680

27. Erlenhov, L., de Oliveira Neto, F.G., Scandariato, R., Leitner, P.: Current and future bots in
software development. In: International Workshop on Bots in Software Engineering (BotSE),
pp. 7–11. IEEE, Piscataway (2019). https://doi.org/10.1109/BotSE.2019.00009

28. Fowler, M., Foemmel, M.: Continuous Integration (original version) (2000). https://
martinfowler.com/articles/originalContinuousIntegration.html. Accessed 15 Apr 2023

29. GitHub: The state of open source software 2022 (2022). octoverse.github.com. Accessed 15
Apr 2023

30. Golzadeh, M., Decan, A., Legay, D., Mens, T.: A ground-truth dataset and classification model
for detecting bots in GitHub issue and PR comments. J. Syst. Softw. 175 (2021). https://doi.
org/10.1016/j.jss.2021.110911

31. Golzadeh, M., Decan, A., Mens, T.: Evaluating a bot detection model on git commit messages.
In: CEUR Workshop Proceedings, vol. 2912 (2021)

32. Golzadeh, M., Decan, A., Mens, T.: On the rise and fall of CI services in GitHub. In:
International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
Piscataway (2021). https://doi.org/10.1109/SANER53432.2022.00084

33. Gonzalez-Barahona, J.M., Sherwood, P., Robles, G., Izquierdo, D.: Technical lag in software
compilations: Measuring how outdated a software deployment is. In: IFIP International
Conference on Open Source Systems, pp. 182–192. Springer, Berlin (2017). https://doi.org/
10.1007/978-3-319-57735-7_17

34. Gousios, G., Pinzger, M., van Deursen, A.: An exploratory study of the pull-based software
development model. In: International Conference on Software Engineering (ICSE), pp. 345–
355. ACM (2014). https://doi.org/10.1145/2568225.2568260

35. Gousios, G., Storey, M.A., Bacchelli, A.: Work practices and challenges in pull-based devel-
opment: the contributor’s perspective. In: International Conference on Software Engineering
(ICSE), pp. 285–296. ACM (2016). https://doi.org/10.1145/2884781.2884826

36. Gousios, G., Zaidman, A., Storey, M.A., van Deursen, A.: Work practices and challenges in
pull-based development: the integrator’s perspective. In: International Conference on Software
Engineering (ICSE), pp. 358–368. IEEE, Piscataway (2015). https://doi.org/10.1109/ICSE.
2015.55

37. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordination. In:
International Conference on Software Engineering (ISCE)—Workshop on the Future of
Software Engineering, pp. 188–198. IEEE, Piscataway (2007). https://doi.org/10.1109/FOSE.
2007.11

38. Holmström, H., Conchúir, E.Ó., Ågerfalk, P.J., Fitzgerald, B.: Global software development
challenges: a case study on temporal, geographical and socio-cultural distance. In: International
Conference on Global Software Engineering (ICGSE), pp. 3–11. IEEE, Piscataway (2006).
https://doi.org/10.1109/ICGSE.2006.261210

39. Kaur, R., Kaur, K.: Insights into developers’ abandonment in FLOSS projects. In: Intelligent
Sustainable Systems. Lecture Notes in Networks and Systems, vol. 333. Springer, Berlin
(2022). https://doi.org/10.1007/978-981-16-6309-3_69

40. Kinsman, T., Wessel, M., Gerosa, M.A., Treude, C.: How do software developers use GitHub
Actions to automate their workflows? In: International Conference on Mining Software Repos-

https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html

 21445 18512 a 21445
18512 a

https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/FOSE.2007.11
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69
https://doi.org/10.1007/978-981-16-6309-3_69

8 The GitHub Development Workflow Automation Ecosystems 213

itories (MSR), pp. 420–431. IEEE, Piscataway (2021). https://doi.org/10.1109/MSR52588.
2021.00054

41. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K.: Do developers update their library
dependencies? Empirical Softw. Eng. 23(1), 384–417 (2018). https://doi.org/10.1007/s10664-
017-9521-5

42. Lebeuf, C., Storey, M.A., Zagalsky, A.: Software bots. IEEE Softw. 35(1), 18–23 (2017).
https://doi.org/10.1109/MS.2017.4541027

43. Mazrae, P.R., Mens, T., Golzadeh, M., Decan, A.: On the usage, co-usage and migration of
CI/CD tools: a qualitative analysis. Empirical Softw. Eng. (2023). https://doi.org/10.1007/
s10664-022-10285-5

44. Mirhosseini, S., Parnin, C.: Can automated pull requests encourage software developers
to upgrade out-of-date dependencies? In: International Conference on Automated Software
Engineering (ASE), pp. 84–94. IEEE, Piscataway (2017). https://doi.org/10.1109/ASE.2017.
8115621

45. Monperrus, M.: Explainable software bot contributions: case study of automated bug fixes.
In: International Workshop on Bots in Software Engineering (BotSE), pp. 12–15. IEEE,
Piscataway (2019). https://doi.org/10.1109/BotSE.2019.00010

46. Peng, Z., Ma, X.: Exploring how software developers work with mention bot in GitHub. CCF
Trans. Pervasive Comput. Interaction 1(3), 190–203 (2019). https://doi.org/10.1007/s42486-
019-00013-2

47. Ribeiro, E., Nascimento, R., Steinmacher, I., Xavier, L., Gerosa, M., De Paula, H., Wessel,
M.: Together or apart? Investigating a mediator bot to aggregate bot’s comments on pull
requests. In: International Conference on Software Maintenance and Evolution—New Ideas
and Emerging Results Track (ICSME-NIER). IEEE, Piscataway (2022). https://doi.org/10.
1109/ICSME55016.2022.00054

48. Saroar, S.G., Nayebi, M.: Developers’ perception of GitHub Actions: a survey analysis. In:
International Conference on Evaluation and Assessment in Software Engineering (EASE)
(2023)

49. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M.: Continuous
deployment at Facebook and OANDA. In: International Conference on Software Engineering
Companion (ICSE), pp. 21–30. IEEE, Piscataway (2016). https://doi.org/10.1145/2889160.
2889223

50. Soares, E., Sizilio, G., Santos, J., da Costa, D.A., Kulesza, U.: The effects of continuous
integration on software development: a systematic literature review. Empirical Softw. Eng.
27(3), 1–61 (2022). https://doi.org/10.1007/s10664-021-10114-1

51. Song, Y., Chaparro, O.: BEE: A tool for structuring and analyzing bug reports. In: Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pp. 1551–1555. ACM (2020). https://doi.org/10.1145/
3368089.3417928

52. Soto-Valero, C., Harrand, N., Monperrus, M., Baudry, B.: A comprehensive study of bloated
dependencies in the Maven ecosystem. Empirical Softw. Eng. 26(3), 1–44 (2021). https://doi.
org/10.1007/s10664-020-09914-8

53. Storey, M.A., Zagalsky, A.: Disrupting developer productivity one bot at a time. In: Interna-
tional Symposium on Foundations of Software Engineering (FSE), pp. 928–931 (2016). https://
doi.org/10.1145/2950290.2983989

54. Stringer, J., Tahir, A., Blincoe, K., Dietrich, J.: Technical lag of dependencies in major package
managers. In: Asia-Pacific Software Engineering Conference (APSEC), pp. 228–237 (2020).
https://doi.org/10.1109/APSEC51365.2020.00031

55. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for evaluating
contribution in GitHub. In: International Conference on Software Engineering (ICSE), pp.
356–366. ACM (2014). https://doi.org/10.1145/2568225.2568315

56. Wang, Z., Wang, Y., Redmiles, D.: From specialized mechanics to project butlers: the usage of
bots in OSS development. IEEE Software (2022). https://doi.org/10.1109/MS.2022.3180297

https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1109/MSR52588.2021.00054
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1109/ICSME55016.2022.00054
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1109/MS.2022.3180297

214 M. Wessel et al.

57. Wessel, M., Abdellatif, A., Wiese, I., Conte, T., Shihab, E., Gerosa, M.A., Steinmacher, I.:
Bots for pull requests: the good, the bad, and the promising. In: International Conference on
Software Engineering (ICSE), pp. 274–286 (2022). https://doi.org/10.1145/3510003.3512765

58. Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., Gerosa, M.A.: Effects of adopting
code review bots on pull requests to OSS projects. In: International Conference on Software
Maintenance and Evolution (ICSME), pp. 1–11. IEEE, Piscataway (2020). https://doi.org/10.
1109/ICSME46990.2020.00011

59. Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., Gerosa, M.A.: What to expect from code
review bots on GitHub? A survey with OSS maintainers. In: Brazilian Symposium on Software
Engineering (SBES), pp. 457–462 (2020). https://doi.org/10.1145/3422392.3422459

60. Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., Gerosa, M.A.: Quality gatekeepers:
investigating the effects of code review bots on pull request activities. Empirical Softw. Eng.
27(5), 108 (2022). https://doi.org/10.1007/s10664-022-10130-9

61. Wessel, M., de Souza, B.M., Steinmacher, I., Wiese, I.S., Polato, I., Chaves, A.P., Gerosa,
M.A.: The power of bots: characterizing and understanding bots in OSS projects. Proc. ACM
Hum.-Comput. Interact. 2(CSCW) (2018). https://doi.org/10.1145/3274451

62. Wessel, M., Vargovich, J., Gerosa, M.A., Treude, C.: Github actions: the impact on the pull
request process (2022). arXiv preprint arXiv:2206.14118

63. Wessel, M., Wiese, I., Steinmacher, I., Gerosa, M.A.: Don’t disturb me: challenges of
interacting with software bots on open source software projects. In: ACM Hum.-Comput.
Interact. (CHI). ACM (2021). https://doi.org/10.1145/3476042

64. Wyrich, M., Bogner, J.: Towards an autonomous bot for automatic source code refactoring. In:
International Workshop on Bots in Software Engineering (BotSE), pp. 24–28 (2019). https://
doi.org/10.1109/BotSE.2019.00015

65. Wyrich, M., Ghit, R., Haller, T., Müller, C.: Bots don’t mind waiting, do they? Comparing the
interaction with automatically and manually created pull requests. In: International Workshop
on Bots in Software Engineering (BotSE), pp. 6–10. IEEE, Piscataway (2021). https://doi.org/
10.1109/BotSE52550.2021.00009

66. Zerouali, A., Mens, T., Decan, A., De Roover, C.: On the impact of security vulnerabilities
in the npm and RubyGems dependency networks. Empirical Softw. Eng. 27(5), 1–45 (2022).
https://doi.org/10.1007/s10664-022-10154-1

67. Zerouali, A., Mens, T., Gonzalez-Barahona, J., Decan, A., Constantinou, E., Robles, G.: A
formal framework for measuring technical lag in component repositories—and its application
to npm. J. Softw. Evol. Process 31(8) (2019). https://doi.org/10.1002/smr.2157

68. Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the relation between outdated
docker containers, severity vulnerabilities, and bugs. In: International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 491–501. IEEE, Piscataway (2019).
https://doi.org/10.1109/SANER.2019.8668013

69. Zimmermann, M., Staicu, C.A., Tenny, C., Pradel, M.: Small world with high risks: a study of
security threats in the npm ecosystem. In: USENIX Security Symposium, pp. 995–1010 (2019)

https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3476042
https://doi.org/10.1145/3476042
https://doi.org/10.1145/3476042
https://doi.org/10.1145/3476042
https://doi.org/10.1145/3476042
https://doi.org/10.1145/3476042
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1109/BotSE52550.2021.00009
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1002/smr.2157
https://doi.org/10.1002/smr.2157
https://doi.org/10.1002/smr.2157
https://doi.org/10.1002/smr.2157
https://doi.org/10.1002/smr.2157
https://doi.org/10.1002/smr.2157
https://doi.org/10.1002/smr.2157
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013

	8 The GitHub Development Workflow Automation Ecosystems
	8.1 Introduction
	8.1.1 Collaborative Software Development and Social Coding
	8.1.2 The GitHub Social Coding Platform
	8.1.3 Continuous Integration and Deployment
	8.1.4 The Workflow Automation Ecosystems of GitHub

	8.2 Workflow Automation Through Development Bots
	8.2.1 What Are Development Bots?
	8.2.2 The Role of Bots in GitHub's Socio-technical Ecosystem
	8.2.3 Advantages of Using Development Bots
	8.2.4 Challenges of Using Development Bots

	8.3 Workflow Automation Through GitHub Actions
	8.3.1 What Is GitHub Actions?
	8.3.2 Empirical Studies on GitHub Actions
	8.3.3 The GitHub Actions Ecosystem
	8.3.4 Challenges of the GitHub Actions Ecosystem

	8.4 Discussion
	References

