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Abstract Large-scale software development has become a highly collaborative and 
geographically distributed endeavor, especially in open-source software develop-
ment ecosystems and their associated developer communities. It has given rise 
to modern development processes (e.g., pull-based development) that involve a 
wide range of activities such as issue and bug handling, code reviewing, coding, 
testing, and deployment. These often very effort-intensive activities are supported 
by a wide variety of tools such as version control systems, bug and issue trackers, 
code reviewing systems, code quality analysis tools, test automation, dependency 
management, and vulnerability detection tools. To reduce the complexity of the 
collaborative development process, many of the repetitive human activities that 
are part of the development workflow are being automated by CI/CD tools that 
help to increase the productivity and quality of software projects. Social coding 
platforms aim to integrate all this tooling and workflow automation in a single 
encompassing environment. These social coding platforms gave rise to the emer-
gence of development bots, facilitating the integration with external CI/CD tools 
and enabling the automation of many other development-related tasks. GitHub, the 
most popular social coding platform, has introduced GitHub Actions to automate 
workflows in its hosted software development repositories since November 2019. 
This chapter explores the ecosystems of development bots and GitHub Actions and 
their interconnection. It provides an extensive survey of the state of the art in this 
domain, discusses the opportunities and threats that these ecosystems entail, and 
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reports on the challenges and future perspectives for researchers as well as software 
practitioners. 

8.1 Introduction 

This introductory section presents the necessary context to set the scene. We start 
by introducing collaborative software development and social coding (Sect. 8.1.1). 
Next, we report on the emergence and dominance of GitHub as the most popular 
social coding platform (Sect. 8.1.2). We continue with a discussion of the prac-
tices of continuous integration, deployment, and delivery (Sect. 8.1.3). Finally, we 
explain the workflow automation solutions of development bots and GitHub Actions 
that have emerged as highly interconnected ecosystems to support these practices 
and that have become omnipresent in GitHub (Sect. 8.1.4). 

We argue that these workflow automation solutions in GitHub constitute novel 
software ecosystems that are worthy of being studied in their own right. More 
specifically, Sect. 8.2 focuses on how development bots should be considered as 
an integral and important part of the fabric of GitHub’s socio-technical ecosystem. 
Section 8.3 focuses on GitHub Actions and how this forms an automation workflow 
dependency network bearing many similarities with the ones that have been studied 
abundantly for packaging ecosystems of reusable software libraries. Section 8.4 
wraps up with a discussion about how both types of automation solutions are 
interrelated and how they are drastically changing the larger GitHub ecosystem of 
which they are part. 

8.1.1 Collaborative Software Development and Social Coding 

The large majority of today’s software is either open source or depends on it to a 
large extent. In response to a demand for higher-quality software products and faster 
time to market, open-source software (OSS) development has become a continuous, 
highly distributed, and collaborative endeavor [15]. In such a setting, development 
teams often collaborate on these projects without geographical boundaries [37]. It 
is no longer expected for software projects to have all their developers working 
in the same location during the same office hours. To achieve this new way of 
software development, specific collaboration mechanisms have been devised such 
as issue and bug tracking, pull-based development [34], code reviews, commenting 
mechanisms, and the use of social communication channels to interact with other 
project contributors. Collaboration extends distributed software development from 
a primarily technical activity to an increasingly social phenomenon [55]. Social 
activities play an essential role in collaborative development and become sometimes 
as critical as technical activities. They also come with their own challenges, for
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example, because of cultural differences, language barriers, or social conflicts 
[10, 38]. 

A multitude and variety of development-related activities need to be carried 
out during collaborative software development: developing, debugging, testing, and 
reviewing code; quality and security analysis; packaging, releasing, and deploying 
software distributions; and so on. This makes it increasingly challenging for con-
tributor communities to keep up with the rapid pace of producing and maintaining 
high-quality software releases. It requires the orchestrated use of a wide range of 
tools such as version control systems, software distribution managers, bug and issue 
trackers, and vulnerability and dependency analyzers. 

These tools therefore tend to be integrated into so-called social coding platforms 
(e.g., GitLab, GitHub, Bitbucket) that have revolutionized collaborative software 
development practices in the last decade because they provide a high degree of social 
transparency to all aspects of the development process [16]. Social coding platforms 
aim to reconcile the technical and social aspects of software development in a single 
environment. It offers the project contributors a seamless interface and experience 
to contribute with their peers in an open and fully transparent workflow, where 
users can contribute bugs and feature requests through an issue tracking system, 
external contributors can propose code changes through a pull request mechanism, 
core software developers can push (i.e., commit) their own code changes directly 
and accept and integrate the changes proposed by external contributors, and code 
review mechanisms allow code changes to be reviewed by other developers before 
they can be accepted [34]. 

8.1.2 The GitHub Social Coding Platform 

GitHub has revolutionized software development since it was the first platform to 
propose a pull-based software development process [3, 34]. The pull-based model 
allows to make a distinction between direct contributions from a typically small 
group of core developers with commit access to the main code repository and 
indirect contributions from external contributors that do not have direct commit 
access. This allows external contributors to propose code changes and code 
additions through so-called pull requests (PRs). To do so, these contributors have 
to fork the main repository, update their local copies with code changes, and submit 
PRs to request to pull these changes into the main code repository [35]. This indirect 
contribution method enables the project’s maintainers to review the code submitted 
through each PR, test it, request changes to the submitter of the PR if needed, 
and finally integrate the PR into the codebase without getting involved in code 
development [35]. A pull-based development process also comes at a certain cost, 
since it raises the need for integrators—specialized project members responsible for 
managing others’ contributions who act as guardians of the projects’ quality [36]. 

The focus of this chapter will be on GitHub, since it is the largest and most 
popular social coding platform by far, especially for open-source projects, and as a



186 M. Wessel et al.

consequence, it has been the focus of a significant amount of empirical research. It 
is a web-based platform on the cloud, based on the git version control system, that 
hosts the development history of millions of collaborative software repositories and 
accommodates over 94 million users in 2022 [29]. 

GitHub continues to include more and more support for collaborative software 
development such as a web-based interface on top of the git version control system, 
an issue tracker, the ability to manage project collaborators, the ability to have 
a discussion forum for each git repository, an easy way to manage PRs or even 
to submit new PRs directly from within the GitHub interface, a mechanism to 
create project releases, the ability to create and host project websites, the ability 
to plan and track projects, support for analyzing outdated dependencies and security 
vulnerabilities, and metrics and visualizations that provide insights in how the 
project and its community are evolving over time. GitHub also comes with a 
REST and GraphQL API to query and retrieve data from GitHub or to integrate 
GitHub repositories with external tools. By late 2022, GitHub added a range of new 
features including (i) github.dev, a web-based code editor that runs entirely in the 
Internet browser to navigate, edit, and commit code changes directly from within 
the browser; (ii) GitHub CodeSpaces, a more complete development environment 
that is hosted in the cloud; (iii) GitHub Packages to create, publish, view, and install 
new packages directly from one’s code repository; (iv) GitHub CoPilot, an AI-based 
tool that provides smart code auto-completion; and (v) GitHub Actions, a workflow 
automation tool fully integrated into GitHub. 

8.1.3 Continuous Integration and Deployment 

Continuous integration (CI), continuous deployment, and continuous delivery (CD) 
have become the cornerstone of collaborative software development practices. CI 
practices were introduced in the late 1990s in the context of agile development and 
extreme programming methodologies. According to the Agile Manifesto principles, 
“our highest priority is to satisfy the customer through early and continuous delivery 
of valuable software” [5]. In their seminal blog [28], Fowler and Foemmel presented 
CI as a way to increase the speed of software development while at the same time 
improving software quality and reducing the cost and risk of work integration among 
distributed teams. They outlined core CI practices to do so, including frequent 
code commits, automated tests that run several times a day, frequent and fully 
reproducible builds, immediately fixing broken builds, and so on. CD practices, 
on the other hand, aim at automating the delivery and deployment of software 
products, following any changes to their code [12]. Key elements of continuous 
deployment are the creation of feasible, small, and isolated software updates that 
are automatically deployed immediately after completion of the development and 
testing [49]. 

Many self-hosted CI/CD tools and cloud-based CI/CD services automate the 
integration of code changes from multiple contributors into a centralized repository
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where automated builds, tests, quality checks, and deployments are run. Popular 
examples of such CI/CD solutions are Jenkins, Travis, CircleCI, and Azure DevOps. 
They have been the subject of much empirical research over the last decades. 
An excellent starting point is the systematic literature review by Soares et al. 
[50], covering 106 research publications reporting on the use of CI/CD. This 
review aimed at identifying and interpreting empirical evidence regarding how 
CI/CD impacts software development. It revealed that CI/CD has many benefits 
for software projects. Besides the aforementioned cost reduction and quality and 
productivity improvement, it also comes with a reduction of security risks, increased 
project transparency and predictability, greater confidence in the software product, 
easiness to locate and fix bugs, and improved team communication. CI can also be 
beneficial to pull-based development by improving and accelerating the integration 
process. 

CI/CD services have also been built into social coding platforms. With GitLab 
CI/CD, GitLab has already featured CI/CD capabilities since November 2012. 
Bitbucket has supported Pipelines since May 2016. Based on popular demand, in 
response to this support for CI/CD in competing social coding platforms, GitHub 
officially began supporting CI/CD through GitHub Actions in August 2019, and the 
product was released publicly in November 2019. Before the release of GitHub 
Actions, Travis used to be the most popular CI/CD cloud service for GitHub 
repositories [6]. However, quantitative evidence has revealed that Travis is getting 
replaced by GitHub Actions at a rapid pace [32]. Additional qualitative evidence 
has revealed the reasons behind this replacement and the added value that GitHub 
Actions is bringing in comparison to Travis [43]. 

8.1.4 The Workflow Automation Ecosystems of GitHub 

The previous sections have highlighted that global software development, especially 
for OSS projects, is a continuous, highly distributed, and collaborative endeavor. 
The diversity in skills and interests of the projects’ contributors and the wide 
diversity of activities that need to be supported (e.g., coding, debugging, testing, 
documenting, packaging, deploying, quality analysis, security analysis, and depen-
dency analysis) make it very challenging for project communities to keep up with 
the rapid pace of producing and maintaining high-quality software releases. 

Solutions to automate part of the software development workflow, such as the 
aforementioned CI/CD tools and services, have been successfully used to reduce 
this maintenance burden (see Sect. 8.1.3). However, these tools do not support 
the entire range of project-related activities for which automation could come to 
the rescue. There are many repetitive and time-consuming social and technical 
activities for which, traditionally, CI/CD tools did not provide any support. Some 
examples of these are welcoming newcomers, keeping dependencies up to date, 
detecting and resolving security vulnerabilities, triaging issues, closing stale issues, 
finding and assigning code reviewers, encouraging contributors to remain active,



188 M. Wessel et al.

and software licensing. To help project contributors in carrying out these activities, 
CI/CD solutions have been complemented by novel workflow automation solutions: 

Development Bots A well-known and very popular example of such workflow 
automation solutions is what we will refer to as development bots. Erlenhov 
et al. [27] consider development bots to be artificial software developers who are 
autonomous and adaptive and have technical as well as social competence. Such 
automated software development agents have become a widely accepted interface 
for interacting with human contributors and automating some of their tasks. A study 
by Wang et al. revealed that bots are frequently used in the most popular OSS 
projects on GitHub [56]. These bots tend to be specialized in specific activities, 
belonging to the following main categories: CI/CD assistance, issue and PR man-
agement, code review support, dependency and security management, community 
support, and documentation generation. Section 8.2 will discuss in detail how such 
bots are used on GitHub to automate part of the software development workflow 
and how these bots form an integral part of the socio-technical ecosystem of 
software contributors and software projects. More specifically, bots affect the social 
interaction within a software project, as they influence how human contributors 
communicate and collaborate and may even change the collaboration patterns, 
habits, and productivity of project contributors [42]. 

GitHub Actions Another popular mechanism to automate development activities 
in GitHub repositories is using GitHub Actions, a workflow automation service 
officially released in November 2019. Its deep integration into GitHub implies that 
GitHub Actions can be used not only for automating traditional CI/CD services 
such as executing test suites or deploying new releases, but also to facilitate other 
activities such as code reviews, communicating with developers, and monitoring 
and fixing dependencies and security vulnerabilities. GitHub Actions allows project 
maintainers to define automated workflows for such activities. These workflows can 
be triggered in a variety of ways such as commits, issues, pull requests, comments, 
schedules, and many more [11]. GitHub Actions also promotes the use and sharing 
of reusable components, called Actions, in workflows. These Actions are distributed 
in public GitHub repositories and on the GitHub Marketplace.1 They allow devel-
opers to automate their workflows by easily integrating specific tasks (e.g., set 
up a specific programming language environment, publish a release on a package 
registry, run tests, and check code quality) without having to write the corresponding 
code. Only 18 months after its introduction, GitHub Actions has become the most 
dominant CI/CD service on GitHub [32]. Section 8.3 presents this ecosystem of 
reusable Actions in more detail. This ecosystem forms a technical dependency 
network that bears many similarities with traditional package dependency networks 
of reusable software libraries (such as npm for JavaScript, RubyGems for Ruby, 
NuGet for .NET, Packagist for PHP, CRAN for R, Maven for Java) that have been 
the subject of many past empirical studies (e.g., [21]).

1 https://github.com/marketplace?type=actions. 
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The two aforementioned workflow automation solutions are increasingly used in 
OSS projects on GitHub, partly because of their tight integration into the social cod-
ing platform, thereby effectively transforming the software development automation 
landscape. It therefore seems fair to claim that they form new development workflow 
automation ecosystems that are worthy of being investigated in their own right. 
Research on these ecosystems is still in its infancy, given the relative novelty of 
the proposed automation solutions. Development bots and workflows that rely on 
GitHub Actions are already used in hundreds of thousands of GitHub repositories, 
and their usage continues to increase (the Marketplace of GitHub Actions has been 
growing exponentially since its introduction), justifying the need for further studies 
on the evolution of these ecosystems and their impact on collaborative software 
development practices. 

8.2 Workflow Automation Through Development Bots 

As explained in Sect. 8.1.4, development bots emerged on social coding platforms 
such as GitHub to enable the automation of various routines and time-consuming 
tasks previously assigned only to human developers. This section explores how 
bots are an integral part of GitHub’s socio-technical collaborative development 
ecosystem. Considering the workflow automation provided by development bots, 
we focus on the various usage scenarios, advantages, shortcomings, challenges, and 
opportunities of using them. 

8.2.1 What Are Development Bots? 

Development bots that reside on social coding platforms such as GitHub are often 
seen as workflow automation providers due to their ability to react to certain 
stimuli, such as events triggered by human developers or other tools, and automate 
routine development-related tasks in response. To a certain extent, bots may act 
autonomously [27, 64]. In open-source repositories, bots can leverage the public 
availability of software assets, including source code, discussions, issues, and 
comments. 

Besides automatically executing activities, development bots may also exhibit 
human-like traits. Erlenhov et al. [27] describe bots based on their social compe-
tence, which varies from very simple identity characteristics (e.g., a human-like 
name or profile picture) to more sophisticated ones such as artificial intelligence 
and the ability to adapt to distinct scenarios. In practice, bots that are active in 
GitHub repositories are automated agents that interact with the GitHub platform 
in essentially the same way as a typical human developer would be expected to: 
they possess a GitHub account, commit code, open or close issues or PRs, and 
comment on all of the above. Some bots have an official integration with GitHub and
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are publicly available as Apps in the GitHub marketplace.2 These official bots are 
properly tagged as such in the various activities they make in the GitHub platform. 

Bots can also be used as an interface between human developers and other 
software services, such as external CI/CD tools or other third-party applications. 
Such bots provide additional value on top of the services they offer an interface for, 
by providing new forms of interaction with these services, or by combining multiple 
services. 

One particularly interesting example is Dependabot, a dependency manage-
ment tool responsible for creating PRs in GitHub repositories to propose to upgrade 
dependencies in order to resolve or reduce the risk of security vulnerabilities or 
bugs. Dependabot acts as an interface between the project maintainer, who 
is responsible for keeping the project dependencies up to date, and the package 
managers (such as npm for JavaScript) that expose the reusable packages that 
the project depends on. While originally it used to be a third-party service, 
Dependabot is now deeply integrated into the GitHub platform and has become 
one of the most popular dependency management bots, accounting for more than 
7.7 million dependency updates in OSS projects [65]. A well-known alternative is 
renovatebot.3 

Bots can even create, review, and decide whether to integrate the changes made 
in a PR into the repository by themselves in complete autonomy. Figure 8.1 provides 
an example of multiple bots interacting as part of a single PR. There is not a 
single human contributor involved in this interaction. The PR is triggered by a 
recommendation by Dependabot to update a dependency. The mergify bot 
reacts to this by verifying if the proposed change passes all checks, and accepts 
and merges the PR. Finally, nemobot reacts with a visual comment applauding the 
merged PR. 

From a research viewpoint, the increasing use of bots raises the need for large-
scale empirical studies on bot usage in social coding platforms such as GitHub. 
Such studies enable us to assess whether bots serve their intended purpose and 
whether their introduction has any positive or negative side effects on the socio-
technical fabric of the project or ecosystem in which they are used. To enable such 
empirical studies, it is necessary to determine which projects rely on bots and which 
user accounts actually correspond to bots. Several bot detection heuristics have 
been proposed to automatically identify bot contributions [1, 23, 30]. BIMAN [23] 
relies on bot naming conventions, repetitiveness in commit messages, and features 
related to files changed in commits. BoDeGHa [30] relies on comment patterns 
in issue and PR comments in GitHub repositories, based on the assumption that 
bots tend to use different and fewer comment patterns than humans. BotHunter [1] 
additionally relies on features corresponding to profile information (e.g., account 
name) and account activity (e.g., median daily activity) to identify bot accounts

2 https://github.com/marketplace?type=apps. 
3 https://github.com/renovatebot/renovate. 

https://github.com/marketplace?type=apps
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https://github.com/marketplace?type=apps
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
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Fig. 8.1 Example of multiple bots interacting within the same PR
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more accurately. BoDeGiC [31] allows to detect bots in git repositories based on 
commit messages and has been trained using the classification model of BoDeGHa. 

An important challenge when identifying automated contributions by bots is the 
presence of so-called mixed accounts—accounts used by a human developer and a 
bot in parallel—exhibiting both human-like and bot-like behavior [30]. Not properly 
detecting such cases is likely to lead to false positives and false negatives during bot 
detection, which may affect the outcome of empirical analyses. Cassee et al. [9] 
have shown that existing classification models are not suitable to reliably detect 
mixed accounts. 

8.2.2 The Role of Bots in GitHub’s Socio-technical Ecosystem 

An important characteristic of bots is that they form an integral part of GitHub’s 
socio-technical ecosystem of collaborative software development. To consider 
them as such, we adopt an ecosystemic and socio-technical viewpoint, similar to 
Constantinou and Mens [14] who viewed a software ecosystem as a socio-technical 
network that is composed of a combination of technical components (e.g., software 
projects and their source code history) and social components (e.g., contributor and 
communities involved in the development and maintenance of the software). 

An interesting novelty of bots is that while they are technical components 
themselves (since they are executable software artifacts), they should also be 
considered as being social components, since they play a crucial role in the social 
aspects of the ecosystem. The assistance provided by bots, as new voices in 
the development conversation [45], has the potential to smooth and improve the 
efficiency of developers’ communication. Wessel et al. [60] have shown that the 
number of human comments decreases when using bots, which usually implies 
that the number of trivial discussions decreases. Indeed, bots are meant to relieve, 
augment, and support the collaborative software development activities that are 
carried out by the human contributors that jointly develop and maintain large 
software projects. Moreover, bots often interact with human collaborators (and with 
other bots) using the same interface as humans do. 

Figure 8.2 illustrates an exemplary case of the role that bots play in this 
socio-technical ecosystem. A human contributor submits a PR to add tests to a 
particular project module. The first bot to react to the PR, changeset-bot, 
verifies whether the changeset file was updated, and the proposed change will be 
released into a specific version of the packages implemented in the repository. 
Then, vercel bot deploys the code to the third-party application Vercel and 
provides a URL for the developers to inspect a deployment preview in the PR. Next, 
the codesandbox-ci bot provides the URL of an isolated test environment to 
validate the changes made in the PR. Finally, the human project maintainer approves 
the changes, reacts with a comment, and merges the PR. 

Like the many roles human software developers can fulfill, a variety of bots 
have become highly active actors in every phase of the development automation
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Fig. 8.2 Example of an interaction between two humans and three bots within a single PR
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workflow. Thanks to the continuous efforts of practitioners and researchers, a wide 
range of development bots are available for use by developers [42, 56]. Wang et al. 
[56] have shown that bot usage is common practice in OSS development. Through 
repository mining of 613 GitHub repositories, they found 201 different bots. 
Similar to prior research by Wessel et al. [61], the authors provided a classification 
of bots according to their main role in the repository. These categories include 
CI/CD assistance, issue and PR management, code review support, dependency and 
security management, community support, and documentation generation. 

In addition to the aforementioned examples of bots, other sophisticated bots 
have been proposed in the literature. Wyrich and Bogner [64], for example, 
proposed a bot that automatically refactors the source code of a project. Their 
goal was to eliminate the need for developers to manually find and correct code 
smells, as this task can be very time-consuming and may require certain expertise. 
Therefore, the bot was designed to act autonomously, integrating into the natural 
workflow of the development team on GitHub. The bot makes code changes 
corresponding to proposed code refactorings and submits a PR with these changes. 
Project maintainers can review these changes and decide to integrate them into the 
codebase. 

8.2.3 Advantages of Using Development Bots 

Development bots generally execute tasks that would otherwise have to be per-
formed manually by humans. Through interviews with industry practitioners, 
Erlenhov et al. [26] found that bots are used either because they improve produc-
tivity or enable activities that are not realistically feasible for humans [26]. Some 
software practitioners stress that bots are able to carry out certain tasks better 
than humans due to their availability, scalability, and capacity to process large 
amounts of data [26]. For example, bots can handle tasks continuously 24/7 without 
ever needing to take a break. Song and Chaparro [51] designed BEE, a bot that 
automatically analyzes incoming issues on GitHub repositories and immediately 
provides feedback on them. Due to BEE’s prompt reaction, issue reporters can 
more quickly gain a general idea of what is missing without waiting for the project 
maintainers’ feedback. Bots also scale, increase consistency, and mitigate human 
errors. In terms of productivity increase, bot usage is frequently motivated by 
the necessity of spending less time on routine, time-consuming, or tedious tasks. 
Automating such activities through bots allows developers to focus on their core 
code development and review tasks [26, 53]. Mirhosseini and Parnin [44] analyzed 
automated PRs created by greenkeeper, a bot to update dependencies, similar 
to the ones created by dependabot. Such a bot avoids manually monitoring for 
new releases in the packages. The results show that OSS repositories that use the 
bot upgraded the dependencies 1.6 times more regularly than repositories that did 
not use any other bots or tools.
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Specifically in the context of code reviews, Wessel et al. [59] carried out 
a survey with 127 software project developers to investigate the advantages of 
adopting bots to support code review activities. Their study confirmed the results 
of Erlenhov et al. [26]. The main reasons for adopting bots are related to improving 
developer feedback, automating routine tasks, and ensuring high-quality standards. 
Interestingly, developers also report benefits related to interpersonal relationships. 
According to the surveyed developers, negative feedback in an automatic bot report 
feels less rude or intimidating than if a human would provide the same feedback. 
They also report that by providing quick and constant feedback, bots reduce the 
chance that a PR gets abandoned by its author. 

Bots can also help to support developers unfamiliar with a software project or 
with specific software engineering practices and technologies. For example, Brown 
and Parnin [8] propose a bot to nudge students toward applying better software 
engineering practices. They designed a bot that provides daily updates on software 
development processes based on students’ code contributions on GitHub. They show 
that such a bot can improve development practices and increase code quality and 
productivity. 

The use of bots to automate development workflows can also result in a change 
in the habits of project contributors. Wessel et al. [58] investigated how activity 
traces change after the adoption of bots. They observed that after bot adoption, 
projects have more merged PRs, fewer comments, fewer rejected PRs, and faster 
PR rejections. Developers explain that some of these observed effects are caused by 
increased visibility of code quality metrics, immediate feedback, test automation, 
the increased confidence in the process, change in the discussion focus, and the fact 
that bot feedback pushes contributors to take action. 

In summary, the literature suggests that developers who employ bots primar-
ily expect improved productivity [26, 59]. This, however, surfaces in different 
ways depending on the context and the tasks the bot performs. Automating 
time-consuming or tedious tasks and collecting dispersed information (i.e., 
information gathering) are some ways to improve productivity. Developers also 
emphasize that bots may perform some tasks better than humans (e.g., handling 
tasks 24/7 and at scale, increasing consistency, and mitigating human error). 

8.2.4 Challenges of Using Development Bots 

Despite the numerous benefits leveraged by using development bots, several 
challenges have been reported concerning the workflow automation provided by 
them [26, 63]. Some bots have been studied in detail, revealing the challenges and 
limitations of their PR interventions [7, 44, 46]. 

Trust Trusting a bot to act appropriately and reliably is challenging [26]. A side 
effect of overly relying on bots is that humans no longer question whether these 
bots are taking the correct actions since they assume bots to be experts in their tasks.
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Therefore, developers can be caught off guard by excessive incorrect outcomes from 
bots [26]. A key solution to increase trust is building a reliable testing environment 
that allows developers to try out bots and avoid unanticipated problems. 

Discoverability and Configuration To confirm the challenges caused by devel-
opment bots in PR interactions, Wessel et al. [63] interviewed 21 practitioners. 
Their study revealed several challenges raised by bot usage, such as discoverability 
and configuration issues. Developers complained about the lack of contextualized 
actions, limited and burdensome configuration options, and technical overhead to 
host and deploy their own bot. Moreover, the overload of information generated by 
bots when interacting on PRs has appeared as the most prominent challenge. 

Interruption and Noise Developers constantly struggle with interruptions and 
noise produced by bots [26]. For instance, Brown and Parnin [7] analyzed 
tool-recommender-bot, a bot that automatically configures a project to 
use an open-source static analysis tool for Java code and then submits a PR with a 
generic message explaining how the proposed tool works. They reported that this 
bot still needs to overcome problems such as notification workload. They applied 
tool-recommender-bot in real projects for evaluation purposes. Only two 
PRs out of 52 proposed recommendations were accepted. Peng and Ma [46] 
studied how developers perceive and work with mention bot, a reviewer 
recommendation bot created by Facebook. It automatically tags a potential reviewer 
for a PR depending on the files changed. Project maintainers with higher expertise 
(i.e., maintainers who contributed more frequently) in a particular file are more 
likely to be suggested as reviewers by the bot. The study found that mention 
bot reduced contributors’ effort in identifying proper reviewers. As a negative side 
effect, however, developers were bothered by frequent review notifications when 
dealing with a heavy workload. 

Wessel et al.  [63] introduced a theory about how certain bot behaviors can 
be perceived as noisy. Indeed, many bots provide several comments when an 
issue or PR is opened by a contributor, with dense information and frequently 
overusing visual elements. Similarly, bots perform repetitive actions such as creating 
numerous PRs (e.g., to update the many dependencies a project can have) and 
leaving dozens of comments in a row (e.g., to report on test coverage each time 
a new commit is added to the PR). These situations can lead to information 
and notification overload, disrupting developers’ communication. Oftentimes, the 
problem is not a singular bot that is too verbose, but a combination of multiple bots 
that are simultaneously active and, together, lead to information overload [26]. 

Researchers have attempted to create solutions to reduce the information over-
load created by bots. Wessel et al. [57] suggested creating better ways to represent 
the information of bots, such as clearer summaries of pull requests. Ribeiro 
et al. [47] implemented FunnelBot that integrated these suggestions. Figure 8.3 
shows an example of a PR comment posted by FunnelBot. The comment shows 
(A) an introductory message, (B) a list with all groups of bot messages collapsed, 
and (C) one expanded example where we can see the CodesandBox comment.
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Fig. 8.3 Example of PR comment created by FunnelBot 

8.3 Workflow Automation Through GitHub Actions 

As explained in Sect. 8.1.4, software development workflows can be automated 
using different techniques, including CI/CD solutions (presented in Sect. 8.1.3) and 
development bots (presented in Sect. 8.2). The third way is GitHub Actions, which is 
the focus of the current section. We explain what GitHub Actions are, how prevalent 
they are, and how they constitute an ecosystem of their own. We also discuss the 
potential challenges this novel ecosystem is confronted with. 

8.3.1 What Is GitHub Actions? 

The GitHub social coding platform has introduced GitHub Actions as a way to 
enable the specification and execution of automated workflows. It started as a 
beta product in 2018 providing the possibility to create Actions inside containers 
to augment and connect software development workflows. When the product was 
officially released to the public in November 2019, GitHub Actions also integrated a 
fully featured CI/CD service, answering the high demand of GitHub users to provide 
CI/CD support similar to what was already available in competing social coding 
platforms such as GitLab and Bitbucket [16]. 

Since its introduction, GitHub Actions has become the dominant CI/CD service 
on GitHub based on a quantitative study by Golzadeh et al. [32], including more 
than 90K GitHub repositories. Figure 8.4 provides a historical overview of CI/CD 
usage in those repositories, starting from the first observation of Travis usage in June 
2011. Initially, GitHub repositories primarily used Travis as a CI/CD service. Over
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Fig. 8.4 Evolution of the proportion of GitHub repositories using a specific CI/CD solution 

time, other CI/CD solutions were used, but Travis remained the dominant CI/CD. 
When GitHub Actions entered the CI/CD landscape, it overtook the other CI/CD 
solutions in popularity in less than 18 months after its introduction. Mazrae et al. 
[43] complemented this quantitative analysis by qualitative interviews to understand 
the reasons behind GitHub Actions becoming the dominant CI/CD tool in GitHub, 
as well as why project maintainers decided to migrate to GitHub Actions primarily. 
The main reported reasons were the seamless integration into GitHub, the ease of 
use, and great support for its reusable Actions. 

GitHub Actions allows repository maintainers to automate a wide range of tasks. 
In addition to providing typical CI/CD services such as building code, executing 
test suites, and deploying new releases, GitHub Actions’ tight integration with 
GitHub enables it to include better support of third-party tools and build support 
for well-known operating systems and hardware architectures, and more scalable 
cloud-based hardware to produce results faster. GitHub Actions also facilitates the 
communication between the project and external tools (such as third-party CI/CD 
services) and easier dependency and security monitoring and management [22]. 

Specifying Executable Workflows GitHub Actions is based on the so-called 
concept of executable workflows that can be defined by maintainers of GitHub 
repositories. The structure of a workflow is schematically presented in Fig. 8.5 and 
explained below. 

A workflow constitutes a configurable automated process that is defined by 
a YAML file added to the .github/workflows directory of the GitHub 
repository. A workflow can be executed based on events specified in the workflow 
description that act as a trigger for running the workflow. Examples of such triggers 
are commits, issues, PRs, comments, schedules, or even manual invocation [11]. 
The example workflow in Listing 8.1 (lines 3–6) defines three possible triggers: 
upon committing (push:) or receiving a PR (pull_request:), or based on a 
specified time schedule (cron: "0 6 * *  1").
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Fig. 8.5 Schematic representation of the structure of a GitHub workflow description 

A workflow typically runs one job in some virtual environment that is created 
to execute the job (e.g., an instance of some specific version of Ubuntu, macOS, 
or Microsoft Windows). A workflow can also execute multiple jobs, in parallel (by 
default) or sequentially. Workflows can define a matrix strategy to automatically 
create and run parallel jobs based on the combination of variable values defined 
by the matrix. This is, for example, useful if one would like to build and test 
source code in multiple versions of a programming language and/or on multiple 
operating systems. In the example of Listing 8.1, the matrix strategy (lines 10–13) 
specifies that the job will be run on five different versions of Python for two different 
operating systems. 

To run a workflow specified in a GitHub repository, developers can use the 
infrastructure provided by GitHub, or rely on self-hosted runners if more specific 
hardware or operating systems are needed. Each job is composed of a series of 
steps that specify the tasks to be executed sequentially by the job. These steps can 
be simple shell commands to be run within the virtual environment (such as lines 
22–24 in Listing 8.1). Alternatively, steps can use and execute predefined reusable 
Actions, which will be discussed below.
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Listing 8.1 Example of a YAML workflow file 

1 name: Test project 
2 on: 
3 push: 
4 pull_request: 
5 schedule: 
6 - cron: "0 6 * *  1" 
7 jobs: 
8 build-and-test: 
9 strategy: 

10 matrix: 
11 os: [ubuntu-22.04, windows-latest] 
12 python: ["3.6", "3.7", "3.8", "3.9", "3.10"] 
13 runs-on: ${{ matrix.os }} 
14 steps: 
15 - uses: actions/checkout@v2 
16 - name: Set up Python 
17 uses: actions/setup-python@v2 
18 with: 
19 python-version: ${{ matrix.python }} 
20 - name: Install dependencies 
21 run: |  
22 pip install -r requirements.txt 
23 pip install pytest 
24 - name: Execute tests 
25 run: pytest 

Reusable Actions Actions provide a reuse mechanism for GitHub workflow 
maintainers to avoid reinventing the wheel when automating repetitive activi-
ties [12]. Rather than manually defining the sequence of commands to execute 
as part of a step (such as lines 22–24 in Listing 8.1), it suffices to use a 
specific (version of a) reusable Action. For example, line 16 in Listing 8.1 
(re)uses version 2 of actions/checkout, and line 18 (re)uses version 2 of 
actions/setup-python. Actions are themselves developed through GitHub 
repositories.4 

Workflows can reuse any Action shared in a public repository. To facilitate 
finding such Actions, the GitHub Marketplace provides an interface for providers to 
promote their Actions and for consumers to easily search for suitable Actions.5 The 
number of Actions promoted on the Marketplace has been growing exponentially. 
By December 2022, the Marketplace listed over 16K reusable Actions falling

4 The GitHub repositories for the Actions reused in Listing 8.1 are https://github.com/actions/ 
checkout and https://github.com/actions/setup-python. 
5 See https://github.com/marketplace. In addition to Actions, the marketplace also promotes Apps, 
which are applications that can contain multiple scripts or an entire application. 

https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/actions/setup-python
https://github.com/marketplace
https://github.com/marketplace
https://github.com/marketplace
https://github.com/marketplace
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under 19 different categories. These categories contain a wide diversity of Actions, 
covering tasks such as setting up a specific programming language environment, 
publishing a release on a package registry, running tests, or checking the code 
quality [22]. 

8.3.2 Empirical Studies on GitHub Actions 

Given that GitHub Actions was publicly introduced in 2019, and despite the fact that 
GitHub Actions has become the dominating CI/CD solution on GitHub (according 
to Golzadeh et al. [32]), very few empirical studies have focused on GitHub Actions 
at the time of writing this chapter. 

An early quantitative study by Kinsman et al. [40] in 2021 reported that in a 
dataset of 416,266 GitHub repositories, only as little as 3190 repositories (i.e., 
less than 1%) had been using GitHub Actions. In 2022, Wessel et al. [62] studied 
a dataset composed of the 5000 most-starred GitHub repositories and observed 
that 1489 projects (i.e., 29.8%) had been using GitHub Actions. Also in 2022, 
Decan et al. [22] reported on a dataset of 67,870 active GitHub repositories in 
which 29,778 repositories (i.e., 43.9%) had been using GitHub Actions. These 
quantitative results reveal that GitHub Actions is prevalent in software development 
repositories on GitHub. To complement these quantitative findings, in 2023, Saroar 
and Nayebi [48] carried out a survey with 90 GitHub developers about the best 
practices and perception in using and maintaining GitHub Actions. 

Table 8.1 reports the top six programming languages that most frequently 
coincide with GitHub Actions usage according to Decan et al. [22]. They observed 
that some programming languages are more likely to coincide with GitHub Actions 
usage than others: TypeScript and Go have a higher proportion of repositories 
resorting to GitHub Actions usage (58.5% and 57.2%, respectively) compared to 
JavaScript (34.9%). It is worth noting that the percentages of repositories using 
GitHub Actions are reported with respect to the language itself. For example, 
the number of Python repositories using GitHub Actions is 1.52 times higher 

Table 8.1 Top six languages with the highest proportion of GitHub 
repositories using GitHub Actions according to [22] 

GitHub repositories 
programming language all repositories using GitHub Actions 

JavaScript 13,542 (19.6%) 4730 (34.9%) 

Python 12,319 (17.8%) 5654 (45.9%) 

TypeScript 6362 (9.2%) 3722 (58.5%) 

Java 6105 (8.8%) 2390 (39.2%) 

C.++ 5701 (8.2%) 2331 (40.9%) 

Go 4988 (7.2%) 2854 (57.2%)
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(5654) than the TypeScript repositories using GitHub Actions (3722). One can also 
observe the number of repositories for a specific language and its proportion to 
all the repositories in the dataset. For example, the 13,542 JavaScript repositories 
correspond to 19.6% of all the repositories in the dataset. 

The same study also analyzed which event types are mostly used for triggering 
workflows, reporting that push: and pull_request: are the most frequent 
events triggering workflows, both used by more than half (63.4% and 56.3%, 
respectively) of all considered GitHub repositories relying on workflows. This is not 
surprising since commits and PRs are the most important activities in collaborative 
coding on GitHub. The most frequently used Action is actions/checkout 
(used by 35.5% of all steps and 97.8% of all repositories). Other frequently 
used Actions are related to the deployment of a specific programming language 
environment (e.g., setup-node, setup-python, setup-java). Overall, 
24.2% of all steps use an Action of the form setup-*. 

Finally, they observe that it is common practice to depend on reusable Actions, 
given that nearly all repositories (.>99%) that use workflows have at least one step 
referring to an Action. More than half of the steps in all analyzed workflows (51.1%) 
use an Action. However, this reuse is concentrated toward a limited set of Actions. 
For example, the Actions that are officially provided by GitHub (i.e., those actions 
of the form actions/*) account for 71.7% of all steps that reuse an Action. In 
addition to this, the Actions being reused tend to be concentrated in a few categories. 
Table 8.2 provides the top five categories of Actions used by GitHub repositories, 
as reported by two independently conducted empirical studies [22, 62]. Most of the 
reused actions belong to the “Utilities” and “Continuous Integration” categories, 
followed by “Deployment.” This suggests that GitHub Actions is being used mostly 
to automate the same kinds of activities as what traditional CI/CD tools are being 
used for. 

Wessel et al.  [62] statistically studied the impact of using workflows on different 
aspects of software development like PRs, commit frequency, and issue resolution 
efficiency. By comparing the activities in projects using GitHub Actions, during one 
full year before the use of GitHub Actions in the project and one full year after 
its usage, they used the technique of regression discontinuity analysis to provide 
statistical evidence and showed that after adding GitHub Actions to projects, there 
tend to be fewer accepted PRs, with more discussion comments and fewer commits, 

Table 8.2 Top five most frequent Action categories according to [22, 62] 

Action category % reported by [62] % reported by [22] 

utility 24.9% 23.9% 

continuous integration 24.7% 17.3% 

deployment 9.6% 7.2% 

publishing 8.4% 6.9% 

code quality 7.7% 6.1%
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which take more time to merge. On the other hand, there are more rejected PRs, 
which contain fewer comments and more commits. 

Wessel et al. [62] studied discussions between developers about the usage of 
GitHub Actions in their software projects. Out of the 5000 analyzed GitHub 
repositories, only 897 (18%) had the Discussions feature enabled at the time of 
data collection, and 830 of those (17%) contained at least one discussion thread. 
Focusing on this subset of repositories, they filtered the discussions containing 
the string “GitHub Actions,” resulting in 573 posts in 458 distinct threads of 148 
repositories. The most discussed material about GitHub Actions, found in 28.8% of 
all considered posts, was the need for help with GitHub Actions. This reveals that 
developers actively sought to learn more about how to use workflows effectively. A 
second popular category of discussion in the context of GitHub Actions, found in 
19.0% of all considered posts, was error messages or debug messages. Developers 
were trying to solve issues related to using workflows and applications invoked 
via these workflows, such as linters or code review bots. A third popular category, 
accounting for 14.6% of all considered posts, involved discussions around reusing 
Actions. This is expected, given that Actions are a relatively new concept that many 
developers are not familiar with. 

8.3.3 The GitHub Actions Ecosystem 

As mentioned in Sect. 8.1.4, GitHub Actions is part of the larger workflow automa-
tion ecosystem of GitHub that also includes bots and CI/CD solutions for automat-
ing development workflows in collaborative software projects. Decan et al. [22] 
suggested that GitHub Actions can and should be considered as a new emerging 
ecosystem in its own right. Indeed, the GitHub Actions technology exhibits many 
similarities with more traditional software packaging ecosystems such as npm (for 
JavaScript), Cargo (for Rust), Maven (for Java), or PyPI (for Python), to name 
but a few. Just as software development repositories on GitHub tend to depend 
on external packages distributed through the above package managers—mainly to 
avoid the effort-intensive and error-prone practices of copy-paste reuse—the same 
is valid for development workflows. Maintainers of GitHub repositories can specify 
their workflows to directly depend on reusable Actions. As such, GitHub Actions 
forms a kind of dependency network that bears many similarities with the ones 
of software packaging ecosystems [18]. The parallel with packaging ecosystems 
is quite obvious: automated workflows, as software clients, express dependencies 
toward Actions (being the equivalent of reusable packages) that can exist in different 
versions or releases. Section 8.3.2 reported on quantitative evidence that resorting 
to reusable Actions in workflows has become a common practice. 

Continuous Growth Decan et al. [18] carried out a quantitative empirical analysis 
of the similarities and differences in the evolution of the dependency networks for 
seven different packaging ecosystems of varying sizes and ages, including Cargo,
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Fig. 8.6 Evolution of the number of GitHub repositories using workflows (blue line) and the 
number of Actions used by these repositories (orange line, scaled by a factor of 10 for ease of 
comparison) 

CPAN, CRAN, npm, NuGet, Packagist, and RubyGems. They observed that these 
dependency networks tend to grow over time, both in size and in number of package 
updates. While the vast majority of packages depend on other packages, only a small 
proportion of these packages account for most of the reuse (i.e., they are targeted 
by most of the reverse dependencies). Decan et al. [22] conducted a quantitative 
analysis of GitHub Actions and observed similar characteristics for the GitHub 
Actions dependency network: nearly all the repositories with GitHub Actions 
workflows depend on reusable Actions, and most of the reuse is concentrated 
in a limited number of Actions. They analyzed the evolution of the number of 
repositories using GitHub Actions workflows and the number of Actions being used 
by these repositories. Figure 8.6 shows this evolution for the period 2020–2021, 
revealing a continuous growth of the GitHub Actions ecosystem, in terms of the 
number of consumers (repositories using GitHub Actions workflows) as well as 
producers (Actions being reused by GitHub repositories). 

8.3.4 Challenges of the GitHub Actions Ecosystem 

While packaging ecosystems are extremely useful for their respective communities 
of software developers, they have been shown to face numerous challenges related 
to dependency management [21, 41, 52], outdatedness [19], security vulnerabili-
ties [20, 69], breaking changes [17, 24], deprecation [13], and abandonment of 
package maintainers [4, 14]. We posit that GitHub Actions will suffer (and likely 
suffers already) from similar issues. 

Outdatedness Software developers are continuously confronted with the difficult 
choice of whether, when, and how to keep their dependencies up to date. On the one 
hand, updating a dependency to a more recent version enables them to benefit from
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the latest bug and security fixes. On the other hand, doing so exposes the dependent 
project to an increased risk of breaking changes, as well as to new bugs or security 
issues that may not even have been discovered yet. 

The concept of technical lag was proposed to measure the extent to which 
a software project has outdated dependencies [33]. This lag can be quantified 
along different dimensions: as a function of time (how long has a dependency 
been outdated), version (how many versions is a dependency behind), stability 
(how many known bugs could have been fixed by updating the dependency), and 
security (how many security vulnerabilities could have been addressed by updating 
the dependency). Zerouali et al. [67] formalized this concept in a measurement 
framework that can be applied at the level of packaging ecosystems. In particular, 
they analyzed the technical lag of the npm packaging ecosystem, observing that 
around 26% of the dependencies expressed by npm packages are outdated and 
that half of these outdated dependencies target a version that is .270+ days older 
than the newer one. Other researchers have also applied technical lag to quantify 
outdatedness in software package dependency networks [19, 54]. The technical 
lag framework was also applied to the ecosystem of Docker containers distributed 
through Docker Hub [68]. Chapter 9 provides more details on this matter. 

In a similar vein, applying the technical lag framework to the GitHub Actions 
ecosystem would allow workflow developers to detect and quantify the presence 
of outdated Actions in workflows and help in updating them. It is important to do 
so since, despite the recency of GitHub Actions, according to Decan et al. [22], at 
least 16% of the dependencies in workflows are targeting an old major version of an 
Action. 

Adherence to Semantic Versioning Semantic Versioning (abbreviated to SemVer 
hereafter) is another mechanism that has been proposed to assist software developers 
with the delicate trade-off between benefiting from security or bug fixes and being 
exposed to breaking changes in dependencies. SemVer introduces a set of simple 
rules that suggest how to assign version numbers in packages to inform developers 
of dependent software about potentially breaking changes. In a nutshell, SemVer 
proposes a three-component version scheme major.minor.patch to specify the type 
of changes that have been made in a new package release. Many software packaging 
ecosystems (such as npm, Cargo, and Packagist) are mostly SemVer compliant, 
in that most of their package producers adhere to the SemVer convention [17]. 
Backward-incompatible changes are signalled by an update of the major compo-
nent, while supposedly compatible changes come with an update of either the minor 
or patch component. This allows dependent packages to use so-called dependency 
constraints to define the range of acceptable versions for a dependency (e.g., it would 
be safe to accept all dependency updates within the same major version range if the 
dependency is trusted to be SemVer compliant). 

Maintainers of GitHub Actions workflows are exposed to a similar risk of incom-
patible changes in the Actions they use, whether these are logical changes (affecting 
the behavior of the Actions) or structural changes (affecting the parameters or 
return values). Therefore, knowing whether an Action adheres to SemVer is helpful
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for maintainers of workflows depending on these actions, since they can assume 
minor and patch updates to be backward compatible and, therefore, free of breaking 
changes. GitHub recommends reusing Actions in workflows by specifying only the 
major component of the Action’s version, allowing workflow maintainers to receive 
critical fixes and security patches while maintaining compatibility. However, little is 
known about the actual versioning practices followed by producers and consumers 
of Actions. Preliminary results suggest that GitHub’s recommendation is widely 
followed since nearly 90% of the version tags used to refer to an Action include 
only a major component [22]. However, unlike package managers, GitHub Actions 
offers no support for dependency constraints, implying that producers of Actions are 
required to move these major version tags each time a new version of the Action is 
released. Unless automated, this requirement introduces an additional burden on the 
Action producers [22] and calls for a more profound analysis of the kind of changes 
made in Action updates and of the versioning practices they follow. 

Security Vulnerabilities Another issue is that any software project is subject 
to security vulnerabilities. Package dependency networks have made the attack 
surface of such vulnerabilities several orders of magnitude higher due to the 
widespread dependence on reusable software libraries that tend to have deep 
transitive dependency chains [2, 20, 25, 69]. For example, through a study of 2.8K 
vulnerabilities in the npm and RubyGems packaging ecosystems, Zerouali et al. [66] 
found around 40% of the packages to be exposed to a vulnerability due to their 
(direct or transitive) dependencies, and it often took months to fix them. They also 
observed that a single vulnerable package could expose up to two-thirds of all the 
packages depending on it. 

We see no reason why the GitHub Actions ecosystem would be immune to this 
phenomenon. Indeed, relying on reusable Actions from third-party repositories or 
even from the Marketplace further increases the vulnerability attack surface. Since 
a job in a workflow executes its commands within a runner shared with other jobs 
from the same workflow, individual jobs in the workflow can compromise other 
jobs they interact with. For example, a job could query the environment variables 
used by a later job, write files to a shared directory that a later job processes, 
or even more directly interact with the Docker socket and inspect other running 
containers and execute commands in them.6 Multiple examples of security issues in 
workflows have been reported, sometimes with potentially disastrous consequences, 
such as manipulating pull requests to steal arbitrary secrets,7 injecting arbitrary code 
with workflow commands,8 or bypassing code reviews to push unreviewed code.9 

Unfortunately, we are not aware of any publicly available quantitative analysis 
on the impact of reusable Actions on security vulnerabilities in software projects.

6 https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions# 
using-third-party-actions. 
7 https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html. 
8 https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html. 
9 https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7. 
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This shows that there is an urgent need for further research as well as appropriate 
tooling to support developers of reusable Actions and workflows in assessing and 
hardening their security. A first step in this direction is GitHub’s built-in dependency 
monitoring service Dependabot, which has started to support GitHub Actions 
workflows in January 2022 and reusable Actions in August 2022.10 

Abandonment and Deprecation Another important challenge that packaging 
ecosystems face is the risk of packages becoming unmaintained or deprecated [13] 
when some or all of their core contributors have abandoned the package develop-
ment [4, 14, 39]. If this happens, the packages may become inactive, implying that 
bugs and security vulnerabilities will no longer be fixed. This will propagate to 
dependent packages that rely on such packages. Cogo et al. [13] have studied the 
phenomenon of package deprecation in the npm packaging ecosystem, observing 
that .3.2% of all releases are deprecated, .3.7% of the packages have at least 
one deprecated release, and .66% of the packages with deprecated releases are 
fully deprecated. Constantinou et al. [14] studied the phenomena of developer 
abandonment in the RubyGems and npm packaging ecosystems to determine the 
characteristics that lead to a higher probability of abandoning the ecosystem. 
Developers were found to present such a higher risk if they do not engage in 
discussions with other developers, do not have strong social and technical activity 
intensity, communicate or commit less frequently, and do not participate in both 
technical and social activities for long periods of time. Avelino et al. [4] carried 
out a mixed-methods study to investigate project abandonment in popular GitHub 
projects, revealing that some projects recovered from the abandonment of key 
developers because they were taken over by new core maintainers that were aware 
of the project abandonment risks and had a clear incentive for the project to survive. 

Since Actions are reusable software components being developed in GitHub 
repositories, the GitHub Actions ecosystem is likely to suffer from this risk of 
abandoning developers and the presence of unmaintained or obsolete Actions. 
This calls for studies to quantify this phenomenon and mechanisms to avoid 
abandonment or to provide solutions to overcome the negative effects of such 
abandonment. Examples of such solutions could be finding the right replacement 
for abandoning developers in Action repositories or suggesting consumers of 
unmaintained Actions to migrate to alternative Actions. 

Beyond GitHub Actions The exposure of GitHub Actions to the well-known 
issues that packaging ecosystems face is all the more worrying because they are 
not limited to the GitHub Actions ecosystem but may also affect other packag-
ing ecosystems. Conversely, the GitHub Actions ecosystem may be affected by 
issues coming from packaging ecosystems. This situation is depicted in Fig. 8.7: 
GitHub hosts the development repositories of many software projects distributed 
in packaging ecosystems. These development repositories may define automated

10 https://github.blog/2022-08-09-dependabot-now-alerts-for-vulnerable-github-actions/. 
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Fig. 8.7 Interweaving of the GitHub Actions ecosystem and software packaging ecosystems 

workflows relying on reusable Actions. The Actions themselves are also developed 
in (and directly accessed through) GitHub repositories. Since Actions are software 
components developed in some programming language (mostly in TypeScript 
currently), they may depend on reusable packages or libraries distributed in package 
registries such as npm. 

This potentially strong interconnection between GitHub Actions and packaging 
ecosystems is not without practical consequences given the issues that these 
ecosystems may face. Instead of being mostly limited to their own ecosystem, issues 
affecting either packages or Actions may cross the boundaries and propagate to the 
other software ecosystems they are interwoven with. 

Consider, for example, a reusable Action affected by a security vulnerability. 
To start with, this vulnerability may compromise all the workflows relying on 
the affected Action. Next, it may also compromise the development repositories 
in which these workflows are executed. By extension, it may also affect all the 
software projects developed in these repositories. In turn, these projects may 
affect all the dependent packages that use them and so on. For example, the 
action-download-artifact Action, used by several thousands of reposito-
ries, was found to expose workflows using it to code injection attacks.11 Conversely, 
Actions may depend on vulnerable packages distributed in a packaging ecosystem 
such as npm. As a consequence, issues affecting these packages may propagate to 
the Actions using them and may in turn propagate to the workflows and development 
repositories relying on these Actions. 

In summary, many of the issues that software packaging ecosystems have been 
shown to face also apply directly or indirectly to the GitHub Actions ecosystem.

11 https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-
attacks. 
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Even worse, given that both kinds of ecosystems are tightly interwoven, issues 
in either ecosystem can and will propagate across ecosystem boundaries, which 
may lead to a significantly increased exposure to vulnerabilities and other socio-
technical health issues. This raises the urgent need to conduct empirical research for 
understanding the extent of these issues, analyze their impact and propagation, and 
provide tool support for helping repository, package, and workflow maintainers. 

8.4 Discussion 

This chapter focused on the emerging ecosystems of development workflow 
automation in the GitHub social coding platform, consisting of the socio-technical 
interaction with bots (automated software development agents), and the workflow 
automation offered through GitHub Actions. Combined together, GitHub’s socio-
technical ecosystem comprises human contributors, bots, workflows and reusable 
actions, GitHub Apps,12 and all of the GitHub repositories in which these 
technologies are being developed and used. It also comprises external CI/CD 
services or other development automation tools that may be used by these GitHub 
repositories. In addition to this, there is a tight interweaving with software packaging 
ecosystems, since software packages may be developed using bots and GitHub 
Actions, and the development of bots and Actions may depend on software 
packages. We have argued that the intricate combination of workflow automation 
solutions constitutes an important and increasing risk that exposes the involved 
repositories—and, by extension, the software products they generate or that depend 
on them—to vulnerabilities and other socio-technical issues. Similar issues are 
likely to apply to other social coding platforms (e.g., GitLab and Bitbucket) for the 
same reasons as in GitHub, even though the workflow automation solutions and 
technologies in those platforms may be different. 

We also argued that bots play an important role in the social fabric of the GitHub 
ecosystem, since bots interact and communicate with human contributors using a 
similar interface as the one used by humans (e.g., posting and reacting to comments 
on issues, PRs, code reviews, and commits in repositories). Actions, on the other 
hand, are more commonly used to automate technical tasks such as executing test 
suites and deploying packages. This was quantitatively observed by Decan et al. 
in [22]. 

However, the boundaries between the bot ecosystem and the GitHub Actions 
ecosystem are becoming more and more diffuse. For instance, nothing prevents bots 
from directly using the functionality offered by Actions (e.g., a bot could trigger 
the execution of a workflow using Actions that run test suites). Similarly, an Action 
may instruct a bot to interact with developers and users (e.g., a code coverage Action 
may report its results through some GitHub badge, issue, or PR comment).

12 https://docs.github.com/en/developers/apps. 
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Existing workflow automation solutions were already offered through a wide 
variety of channels for GitHub, for example, through CI/CD services, external bots, 
dedicated web interfaces, or GitHub Apps. The introduction of GitHub Actions 
has further increased the overlap between the possible automation services. For 
instance, some automation services that used to be offered through bots or GitHub 
Apps have now become available as Actions as well. An example is the GitHub App 
the-welcome-bot for welcoming newcomers, a task for which more recently 
a GitHub Action wow-actions/welcome has become available. Two other 
examples are the renovate dependency update service and the codecov code 
coverage analysis that used to be available through web services and GitHub Apps, 
and more recently codecov has become offered as a GitHub Action as well. Going 
one step further, dependabot, which used to be an independent bot service, has 
now become fully integrated into the GitHub platform. 

All these examples illustrate that bots, Apps, Actions, and external services will 
continue to coexist side by side as part of the development workflow ecosystem. 
It is yet unclear to which extent GitHub repositories are using a combination of 
workflow automation solutions, or to which extent they tend to migrate from one 
solution to another. Hence, empirical studies that shed a deeper insight into this 
rapidly expanding ecosystem are urgently needed. 
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