
Empirical Analysis of the GitHub Actions
ecosystem⋆

Pooya Rostami Mazrae1[0000−0002−4859−1546]

Software Engineering Lab, University of Mons, Belgium
pooya.rostamimazrae@umons.ac.be

PhD duration: October 2021 – October 2025
Supervisor: Prof. Tom Mens

Abstract. The importance of open-source software (OSS) development
has increased significantly throughout the last years, covering almost ev-
ery application domain. Moreover, the usage of continuous integration
and delivery (CI/CD) tools in software development has increased sig-
nificantly. CI/CD tools aim to automate the build and delivery process
with the goal of early error discovery and overall quality improvement.
One of the most growing CI/CD tools is GitHub Actions, the integrated
solution within GitHub. The aim of my PhD, under the supervision of
Prof. Tom Mens is to explore the GitHub Actions ecosystem, by em-
pirically analysing the use, impact, and evolution of GitHub Actions in
collaborative OSS development.

Keywords: GitHub Actions · continuous integration · collaborative soft-
ware development · workflow automation.

1 Research area and context

The importance of open-source software (OSS) development has increased sig-
nificantly throughout the last years, covering almost every application domain
[4]. Today, over 80% of the software in technological products or services is OSS,
and this trend is still growing. In addition to this, software ecosystems play
an ever-increasing role in collaborative software development practices. A soft-
ware ecosystem can be defined as “a collection of software projects which are
developed and which co-evolve together in the same environment” [3]. As soft-
ware projects are not usually developed in isolation, it is important to take into
account the ecosystem of which they are part to understand the bigger picture.

The popularity of using continuous integration/delivery (CI/CD) tools in
software development continues to increase [9]. These tools have been used widely
to automate predefined tasks [13]. Introducing these tools in projects help teams
to decrease repetitive tasks and increase the productivity and quality of the soft-
ware development progress. It is only natural that the introduction and extensive

⋆ This work is supported by the ARC-21/25 UMONS3 Action de Recherche Con-
certée financée par le Ministère de la Communauté française – Direction générale de
l’Enseignement non obligatoire et de la Recherche scientifique.



2 P. Rostami Mazrae

use of any automated tool will have important positive and negative effects on
the projects they have been used in.

GitHub Actions is a CI/CD platform that allows developers to automate their
build, test, and deployment pipeline. Developers can create workflow which is an
automated process that is made up of one or multiple jobs and can be triggered
by an event. Jobs are made up of multiple steps and run in an instance of the
virtual environment and steps are a set of tasks that can be executed by a
job. Steps can run commands or Actions. Information about the Actions can be
found in the .github/workflow directory which contains at least one YAML file
to configure the automated tasks.

The ecosystem of GitHub Actions is built on a series of interconnected Ac-
tions. This ecosystem is consist of reusable artifacts that can be used in different
workflows. Actions in workflows can depend on each other since workflows can
depend on each other. Moreover, each of the Actions used in the workflows has
versioning and the problem with versions can affect the workflows that Actions
have been used in and other workflows which are dependent on this workflow.
Furthermore, The study by Golzadeh et al [8] shows that more than 50K from
91,810 repositories are using GitHub Actions as one of their CI/CD tools which
indicates the importance of this ecosystem.

2 Research goal

CI/CD tools are being used in different parts of the software development work-
flow to increase both productivity and quality of software developments [12].
CI/CD tools aim at automating the build process on dedicated servers, with
the goal of early error discovery as well as of an overall quality assessment and
improvement. For such reasons, CI/CD is quite frequently adopted in industry
and open-source [15]. For example, a recent study revealed that within the npm
package management ecosystem for the JavaScript programming language, there
are more than 91K active project repositories that have used at least one CI/CD
tool for automation [8].

One of the fastest-growing CI/CD tools is GitHub Actions. A recent study by
Golzadeh et al. [8] shows that more than 50% of 91,810 repositories in GitHub
use GitHub Actions as their CI/CD tool. Furthermore, [8] indicates that in the
time window of 18 months since its first appearance, GitHub Actions has become
the dominant CI/CD tool on GitHub. Also, GitHub Actions reuses by developers
shows that it has become a new ecosystem. This ecosystem let the developers
reuse the actions and integrate a variety of simple to complex tasks without
having the needed code for it. Like software components in any other software
ecosystem, Actions can depend on each other, have different versions, and even
their input variable is changed by the output of other Actions.

Other similar kinds of CI/CD ecosystems already existed even before the
emergence of GitHub Actions. For example, CircleCI is another CI/CD tool
that has been around since 2011, and it introduced reusable orbs a year before
the creation of GitHub Actions. Jenkins is another popular CI/CD tool that



Empirical Analysis of the GitHub Actions ecosystem 3

has had a large ecosystem of plugins 1 since four years ago. Just like any other
software ecosystem, these CI/CD ecosystems can suffer from issues like technical
lag [16], dependency issues [5], etc.

An important requirement for conducting empirical studies in this domain
is having access to a data source containing recent, reliable, and sufficiently
complete information. Due to this reason, I will concentrate on the GitHub Ac-
tions ecosystem which has a sufficient amount of data and is accessible through
GitHub APIs and other third-party solutions like GHTorrent. Furthermore, the
GitHub Actions ecosystem has been growing faster than many similar ecosys-
tems. For instance, in April 2021 it contained more than 12K reusable Actions
on its marketplace, about 4 times more than CircleCI orbs and 6 times more
than Jenkins plugins.

Lastly, the high usage frequency of Actions in software development and
potential interconnection between different Actions in workflows increase the
importance of studying them. It should be borne in mind that study about the
Actions ecosystem plays an important role since they have been used frequently
in many projects and their problems can have a deep impact on all those projects.

My PhD thesis goal is to empirically analyze the impact of GitHub Actions
on the open-source software development projects using statistical techniques,
providing better insight into the current state of the ecosystem and its usages.

The empirical analysis will help answer a series of questions that provides a
better understanding of the GitHub Actions ecosystem. These questions are:

– RQ1: Why are software developers integrating GitHub Actions into their
projects?

– RQ2: How are software developers reusing GitHub Actions in their projects?
– RQ3: How does the usage of GitHub Actions evolve over time?
– RQ4: What are the short-term and long-term impacts of adding GitHub

Actions to OSS from a statistical analysis point of view on the issue, commits,
and pull requests?

– RQ5: What are the dependency network characteristics of GitHub Actions?

3 Related work

For my ongoing work on RQ1 and RQ2, I needed some knowledge about the
related work and state-of-the-art. The root of CI/CD goes back to agile software
development [1]. One of the earliest studies which lead to increased knowledge
about how to use CI/CD tools is [7]. Through the years, there have been studies
that aim to better understand the impact of CI/CD tools [12,10,6,8]. Some works
concentrated on one specific CI/CD tool to study their changes during some
periods, mostly Travis because of its prior dominance as one of the most popular
CI/CD tools to integrate with GitHub [2,14]. A recent systematic literature
review has surveyed 101 empirical studies that evaluate CI in the context of
software development [11].

1 https://plugins.jenkins.io/

https://plugins.jenkins.io/


4 P. Rostami Mazrae

4 Results to date

As the first step in my PhD research, I started conducting a qualitative study
about CI/CD tool usage, through online interviews with software practitioners.
The main purpose of this study is to analyze and answer RQ1. Working on this
research question and writing a paper about it as a lead writer has given me
a chance to increase my knowledge about the CI/CD tools which is a type of
automation tool in software development by directly writing our paper and also
studying other related works in this area. For this qualitative study, 23 software
practitioners have been interviewed. As a result of this qualitative analysis, we
observed that developers are gradually moving to use GitHub Actions in their
software projects for a diverse series of reasons, including better integration to
GitHub, better support of different platforms, and more reliability. This paper is
currently in the writing phase. I am planning to finish this work by mid-July
and submit it to a top software engineering journal.

As the second step in my PhD research, I am currently focusing on RQ2.
Together with my team members, I have co-authored a conference submission
(currently under review) about CI/CD usage which specifically concentrates on
the use of GitHub Actions in software development repositories. In this work, we
studied 67,870 highly starred GitHub repositories using GitHub Actions, and we
quantified the most frequent jobs used in workflows, the most reused actions and
how they have been reused, and the categories to which these actions belong.

5 Research methodology

For needed information, I rely on different data sources. I will use the GitHub
API or third-party tools to select the repositories based on certain criteria (e.g.,
time of last activity, creation date, language).

This step would be paired with developing automated scripts to extract the
needed software artifacts like issues, commits, and Actions which can be found in
.github/workflows directory, recommended directory for saving all the workflows,
in GitHub repositories. Issues and commits are needed to study the short-term
and long-term effect of adding GitHub Actions since every change manifest itself
in them. It is worth keeping in mind that for some repositories, it is needed to
gather the issues from other issue tracking systems like Jira.

6 Research challenges

There are some research challenges in this area of study which needed to be
addressed. Most of these challenges are data-driven. Below I only mention a few
of them that I have already been able to identify.

The first challenge is related to data gathering. Data about GitHub Actions is
not readily available. Right now, there is no simple, straightforward way to gather
the information related to GitHub Actions. To gather such data one needs to
crawl the GitHub Marketplace and extract the related information about them.



Empirical Analysis of the GitHub Actions ecosystem 5

Moreover, the GitHub REST API and GraphQL API will be used to gather
information related to data like issues and commits of the repositories. Creating
a different snapshot of Actions based on the date is necessary for further analysis
of their evolution.

The second challenge is related to the fact that Actions can be created in any
repository. It is possible to find Actions whose creation date differs from their
repository date. This is possible since people can create Actions in repositories
that they have already created before. This is just one example of possible data
inconsistency in this ecosystem which can create threats to validity in studying
it.

The third challenge relates to the fact that not all Actions can be found in the
GitHub Marketplace since developers can choose to have their Actions without
publishing them on the marketplace.

7 Future work

To fully cover my studies related to RQ1 and RQ2 and other state-of-the-art
works in this matter, I will be involved in writing a chapter of a book about the
GitHub development workflow automation ecosystem. I aim to show the impact
of introducing GitHub Actions as a new workflow automation tool in GitHub. To
fully cover this topic, I will cover the latest works on the reasons why developers
are moving from other CI/CD tools to GitHub Actions and also how they are
using Actions in their projects.

Next, I aim to have a study on the evolution of GitHub Actions usage to
answer the RQ3. To do this, I will study the monthly snapshot of GitHub work-
flows to study how they have changed through time (e.g. adding and removing
Actions, version changes of existing Actions, etc.). I’m planning to submit this
work for MSR 2023 which will be January 2023.

Later, to answer the RQ4, I am planning to statically analyse the short-term
and long-term impact of adding GitHub Actions to the repositories. The short-
term and long-term changes related to adding GitHub Actions can be found by
studying the change in the pattern of issues, commits, and pull requests (e.g.
frequency change in opening or closing them, decrease/increase in time windows
of opening an issue to closing it, etc.). The aim is to study the changes that occur
due to adding GitHub Actions first during adding the CI/CD to the repository
and then after using the CI/CD for some period of time to fully cover the short-
term and long-term impact. The difference in behavior changes between projects
whose already had other CI/CDs before and those adding it to their projects for
the first is also interesting for me.



6 P. Rostami Mazrae

References

1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile
software development (2001)

2. Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build:
An explorative analysis of Travis CI with GitHub. In: International
Conference on Mining Software Repositories (MSR). pp. 356–367 (2017).
https://doi.org/10.1109/MSR.2017.62

3. Blincoe, K., Harrison, F., Damian, D.: Ecosystems in GitHub and a
method for ecosystem identification using reference coupling. In: Working
Conference on Mining Software Repositories. pp. 202–211. IEEE (2015).
https://doi.org/10.1109/MSR.2015.26

4. Coelho, J., Valente, M.T., Milen, L., Silva, L.L.: Is this GitHub project maintained?
Measuring the level of maintenance activity of open-source projects. Information
and Software Technology 122 (2020). https://doi.org/10.1016/j.infsof.2020.106274

5. Decan, A., Mens, T., Claes, M.: An empirical comparison of dependency issues in
oss packaging ecosystems. In: 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). pp. 2–12. IEEE (2017)

6. Elazhary, O., Werner, C., Li, Z.S., Lowlind, D., Ernst, N.A., Storey, M.A.: Uncov-
ering the benefits and challenges of continuous integration practices. IEEE Trans-
actions on Software Engineering (2021)

7. Fowler, M., Foemmel, M.: Continuous integration (2006)
8. Golzadeh, M., Decan, A., Mens, T.: On the rise and fall of CI services in GitHub

(2022)
9. Kavaler, D., Trockman, A., Vasilescu, B., Filkov, V.: Tool choice matters:

JavaScript quality assurance tools and usage outcomes in GitHub projects. In: In-
ternational Conference on Software Engineering (ICSE). pp. 476–487. IEEE (2019)

10. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M.: Continu-
ous deployment at facebook and oanda. In: International Conference on Software
Engineering. pp. 21–30. IEEE (2016)

11. Soares, E., Sizilio, G., Santos, J., Alencar, D., Kulesza, U.: The effects of continuous
integration on software development: a systematic literature review. arXiv preprint
arXiv:2103.05451 (2021)

12. Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productiv-
ity outcomes relating to continuous integration in GitHub. In: Joint Meeting on
Foundations of Software Engineering (FSE). pp. 805–816 (2015)

13. Wessel, M., De Souza, B.M., Steinmacher, I., Wiese, I.S., Polato, I., Chaves, A.P.,
Gerosa, M.A.: The power of bots: Characterizing and understanding bots in oss
projects. International Conference on Human-Computer Interaction (CSCW) 2,
1–19 (2018)

14. Widder, D., Vasilescu, B., Hilton, M., Kästner, C.: I’m leaving you, travis: a contin-
uous integration breakup story. In: 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR). pp. 165–169. IEEE (2018)

15. Zampetti, F., Geremia, S., Bavota, G., Di Penta, M.: Ci/cd pipelines evolution and
restructuring: A qualitative and quantitative study. In: International Conference
on Software Maintenance and Evolution (ICSME). pp. 471–482. IEEE (2021)

16. Zerouali, A., Mens, T., Gonzalez-Barahona, J., Decan, A., Constantinou, E., Rob-
les, G.: A formal framework for measuring technical lag in component reposito-
ries—and its application to npm. Journal of Software: Evolution and Process 31(8),
e2157 (2019)

https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2015.26
https://doi.org/10.1016/j.infsof.2020.106274

	Empirical Analysis of the GitHub Actions ecosystem

