
Automated Recovery of Issue-Commit Links
Leveraging Both Textual and Non-textual Data

Pooya Rostami Mazrae
Computer Engineering Department

Sharif University of Technology
prostami@ce.sharif.edu

Maliheh Izadi
Computer Engineering Department

Sharif University of Technology
maliheh.izadi@sharif.edu

Abbas Heydarnoori
Computer Engineering Department

Sharif University of Technology
heydarnoori@sharif.edu

Abstract—An issue report documents the discussions around
required changes in issue-tracking systems, while a commit
contains the change itself in the version control systems. Recov-
ering links between issues and commits can facilitate many soft-
ware evolution tasks such as bug localization, defect prediction,
software quality measurement, and software documentation. A
previous study on over half a million issues from GitHub reports
only about 42.2% of issues are manually linked by developers to
their pertinent commits. Automating the linking of commit-issue
pairs can contribute to the improvement of the said tasks. By far,
current state-of-the-art approaches for automated commit-issue
linking suffer from low precision, leading to unreliable results,
sometimes to the point that imposes human supervision on the
predicted links. The low performance gets even more severe when
there is a lack of textual information in either commits or issues.
Current approaches are also proven computationally expensive.

We propose Hybrid-Linker, an enhanced approach that over-
comes such limitations by exploiting two information channels;
(1) a non-textual-based component that operates on non-textual,
automatically recorded information of the commit-issue pairs
to predict a link, and (2) a textual-based one which does the
same using textual information of the commit-issue pairs. Then,
combining the results from the two classifiers, Hybrid-Linker
makes the final prediction. Thus, every time one component falls
short in predicting a link, the other component fills the gap
and improves the results. We evaluate Hybrid-Linker against
competing approaches, namely FRLink and DeepLink on a
dataset of 12 projects. Hybrid-Linker achieves 90.1%, 87.8%, and
88.9% based on recall, precision, and F-measure, respectively. It
also outperforms FRLink and DeepLink by 31.3%, and 41.3%,
regarding the F-measure. Moreover, the proposed approach
exhibits extensive improvements in terms of performance as well.
Finally, our source code is publicly available.

Index Terms—Link Recovery, Issue Report, Commit, Software
Maintenance, Machine Learning, Ensemble Methods

I. INTRODUCTION

Issues and commits are two software artifacts commonly
used for various tasks in software hosting platforms such
as GitHub, Jira, and Bugzilla. Issue reports encapsulate user
discussions around different aspects of a software, as a sort
of documentation. Commits contain source code changes re-
quired to fix bugs, add features, improvements, etc discussed in
the issues. Issues are usually reported in bug-tracking systems
such as Bugzilla or Jira, on the other hand, corresponding com-
mits are stored in version control systems such as GitHub [1].
There are also cases that they are both maintained in one
system. When a developer commits a change in a project, it is a

good practice to mention the issue in the commit to document
the relationship between the two. However, it is seldom
the case due to the deadline’s pressure, lack of motivation,
etc. [1]. To quantify the prevalence of missing issue-commit
links, Ruan et al. [2] analyzed over half a million issues
from GitHub. They report only 42.2% of issues were linked
to corresponding commits. Recovering issue-commit links is
deemed important for improving bug prediction solutions [2],
[3], bug assignment [4], feature location techniques [5], and
other software maintenance tasks. It can also be used to
evaluate software maintenance efforts and quality [6]. Thus,
an automated method for recovering links between issues and
their corresponding commits can be of high value.

The first challenge for such an approach is to use a proper
dataset of True and False Links between issues and commits.
True Links are the correct links between issues and their
related commits. All the other combinations of links can be
considered False Links. Current approaches build these links
manually. This affects the reliability of results. Moreover,
some issues have more than one related commit. An auto-
matic solution to recovering True Links should be able to
handle these relationships. Another important aspect is the
performance of proposed approaches. Current studies mostly
focus on the precision and recall scores of the predictions.
However, the prediction time and complexity of the models
are also important.

In this work, we introduce a novel approach, named Hybrid-
Linker to address the above-mentioned problems. Hybrid-
Linker exploits both textual and non-textual data to achieve
higher performance. Textual information includes the issue
title, description, code difference, and commit messages. Non-
textual information consists of various characteristics of an
issue and commits, such as the author of an issue, the
committer, commit time, type of an issue (bug, feature, task),
and state of a issue (open, closed, or resolved). We first
identify all the relevant information and then perform feature
engineering to extract the most important ones. The reason for
incorporating non-textual data is to enable Hybrid-Linker to
exploit this knowledge when there is little textual information
available (e.g., there is no commit messages), or there are few
similarities between the description of an issue and textual
information of a commit. We train a hybrid model consisting
of two classifiers and a module to achieve the best linear
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composition of these classifiers. The non-textual component
is an ensemble of two classifiers. The textual component is
created using TF-IDF word embeddings and a single classifier.
We evaluated Hybrid-Linker against two baseline methods,
FRLink and DeepLink for 12 projects with different charac-
teristics. In summary, our contributions are as follows:

• Proposing an automatic approach, called Hybrid-Linker,
for recovering the links between issues and commits
using a hybrid model of classical classifiers.

• Our results show that Hybrid-Linker outperforms the
competing approaches, FRLink and DeepLink, by 31.3%,
and 41.3% respectively, regarding the F-measure. More-
over, our proposed approach shows extensive improve-
ments in terms of required training time.

• Finally, we release our source code and data publicly.1

II. MOTIVATING EXAMPLE

Here, we illustrate an example as the motivation for en-
hancing automatic link recovering approaches between issues
and commits. Figure 1a is an example of an issue2. Fig-
ure 1b shows an example of a commit3 related to the above-
mentioned issue. The issue and the commit are selected from
Flink project. Apache Flink is an open-source, unified stream-
processing and batch-processing framework developed by the
Apache Software Foundation. An issue has different fields like
type, status, release note, description, created date, updated
date, and resolved data. A commit contains commit message,
committer ID, author ID, name of changed files, and Diff of
changed files. Note that other information such as comments
and code snippets attached to some issues do not always exist.

As shown, there is no compelling similarity between the text
of issue description, its release note and the respective commit
message. Due to lack of similarity in textual information of this
issue and commit, FRLink approach fails to discover the True
Link between them [6], Moreover, DeepLink [2] approach also
struggles to identify this link as there is no code snippet in
the description section of the issue. Thus, DeepLink will find
little semantic relation between the issue and the source code
in this commit. To address these problems, we propose to
extract knowledge from both textual and non-textual channels
of issues and commits. Then combine this information in a
hybrid model to train stronger link recovery models.

III. PROPOSED APPROACH

In this section, we present the main steps of our approach,
namely: (1) data crawling, (2) data preparation, (3) feature
engineering, (4) model training, and (5) linear accumulator
hyper-tuning. Figure 2 illustrates an overview of the approach
and the following provides a detailed description of each of
the five aforementioned steps.

1https://github.com/MalihehIzadi/hybrid-linker
2https://issues.apache.org/jira/browse/FLINK-17012
3https://bit.ly/2PCsQu6

(a) Example of an issue

(b) Example of part of a commit

Fig. 1: Example of a True Link between an issue and a commit

A. Data Crawling

While we utilize a dataset from Claes et al. [7], this dataset
does not satisfy our needs for the approach. More specifically,
we aim to incorporate the code diff data of the commits
into the solution, which is missing from the shared dataset
due to the large volume of such data. To be able to crawl the
excessively large code diff data, we first reduce the number
of projects to a sample of 12 projects. Then, for the sampled
projects, we crawl the missing data from the projects’ code
bases to complement the dataset. Moreover, the dataset is
provided in a segmented state (separated commits and issues).
To uniformize it, for each project, we concatenated segments
of data.

B. Data Preparation

In this step, we prepare the dataset from two aspects. In
the link generation process, we generate the data points, i.e.,
the issue-commit pairs. These data points are assigned with
True Link labels when the link between the issue and its
paired commit is in place and False Link otherwise, i.e., the
issue and commit are irrelevant. We also perform textual data
preprocessing techniques on the textual data of issues and
commits separately to prepare them for feature engineering.
The following elaborates on these two data preparation steps.

1) Link Generation: In the dataset, there are instances of
issues and commits that are already linked by the developers,
which means they are established and validated as True Links.
We take such pairs of issue-commits as data points with the
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Fig. 2: Overview of the proposed approach

True Link label. To train the classifiers, we need to provide the
model with data points labeled as False Link as well. However,
such data points are not explicitly included in the dataset.
Thus, we need to generate them such that their label, False
Link, is ensured. To do so, we pair the commits that are already
linked to an issue by the developers with any issue other than
the ones they are already linked to. Since the commits only
make a True Link with the issues selected by the developers,
pairing them with any other issue makes a False Link.

However, taking all the generated links as False Link data
points makes the dataset extremely imbalanced. To perceive
the severity of this problem in the context of a project, consider
a project with c number of commits that are already linked
to an issue by the developers. If the same project contains
i number of issues, c of which are already linked to the
aforementioned commits. For each commit already linked to
an issue, there are i−1 issues each posing as a potential False
Link pair for the commit. Hence, the number of False Link
data points adds up to c ∗ (i− 1) issue-commit pairs.

To address this issue, we use the criteria used by previous
work [2], [6] to generate the False Links. Thus we compare
the two relevant submission dates of a commit with the three
date attributes in an issue report and construct a new False
link if the commit is submitted seven days before or after any
of these three issue attributes. Table I presents the information
of the resultant dataset. As shown in this table, even after
employing the above-mentioned criteria, the number of False
Links is much larger than those of True Links for all projects.

TABLE I: Selected projects’ information

Project #Issues #Commits #Stars #True
Links

#False
Links

Beam 9133 28824 4300 5750 1505559
Flink 15655 26517 14500 14472 4850083

Freemarker 127 4235 604 177 382
Airflow 6511 10196 18800 5295 1030733
Arrow 7509 6179 6400 5252 1006904

Netbeans 3705 19184 1500 1369 129639
Ignite 12495 32930 3500 9997 2087327
Isis 2264 15284 580 8486 260259

Groovy 9117 30478 3900 8851 457876
Cassandra 15413 31491 6300 146 40415

Ambari 25162 38872 1400 35589 8891881
Calcite 3740 6934 2100 3058 201106

TABLE II: Code term patterns introduced in FRLink [6]

Type Example Regular Expression

C notation OPT INFO [A-Za-z]+[0-9]* .*
Qualified name op.addOption [A-Za-z]+[0-9]*[\.].+

CamelCase addToList [A-Za-z]+.*[A-Z]+.*
UpperCase XOR [A-Z0-9]+

System variable cmd +[A-Za-z0-9]+.+
Refrence expression std::env [a-zA-Z]+[:]{2,}.+

To further alleviate the imbalanced nature of this dataset, we
apply a common data balancing technique. More specifically,
we randomly select the same number of False Links as the
True Links in each project, to provide our classifier with
completely balanced datasets.

2) Textual Data Preprocessing: The resultant dataset con-
tains textual and non-textual data on issues and commits from
the sampled projects. The textual data contains both natural
language text such as issue title, issue description and commit
message, and the code diff.

We first clean and preprocess the input textual data. We
perform the three commonly-used strategies of tokenizing, re-
moving stop words, and stemming on the natural language text
data as the preprocessing step. These preprocessing actions
not only reduce the vocabulary size, which in turn makes the
feature set a compact one, but also they integrate different
forms of words by replacing them with their roots.

As for the diff data, while they do include multiple lines of
code per sample, only the identifiers, i.e., method and variable
names, carry valuable information about the changes in a
commit. That is because many of the keywords and commonly
used method calls in the diff appear all over the code without
indicating the purpose of the code snippet, while identifiers, if
named according to the software development guidelines, refer
to their purpose, role, and/or task. Hence, we aim to extract
only the identifiers through the use of code term patterns. The
code term patterns we employ are the ones previously used
by Sun et al. [6] and Ruan et al. [2] (defined in Table II).

C. Feature Engineering

We leverage both textual and non-textual data to improve
the results of the True Link prediction task. However, the
features in the textual and non-textual feature vectors are not
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equally valuable in terms of being determinative of a True
Link. In the textual data context, there might be distinct words
throughout the dataset that appear in a significant number of
the data points. This signifies that they are simply common
tokens throughout the project and can not be considered as the
indicator of the subject of a commit. In the non-textual context,
this problem manifests itself in highly correlated columns of
data or even almost identical ones. There is also the case of
almost empty columns in which the data is null-valued more
often than not.

This makes the feature vector unnecessarily extensive,
which makes it harder for the classifier models to converge
due to the multitude of parameters they are to optimize. Even
if the classifier does converge and yield better results with such
data included, the improvement is negligible and unjustifiable
when evaluated against the computational costs. For these
reasons, we perform a feature engineering process on both
the textual and non-textual data to reduce the size of feature
vectors and keep both the performance of the solution and
the computational costs of the model optimal. The feature
engineering processes performed are detailed in the following.

1) Textual Feature Engineering: We employ the widely
used data modeling technique, TF-IDF, which captures the
importance of the tokens based on probabilistic measures
over the dataset. This data modeling technique computes
the term frequency of each term (token) in each document
and document frequency of each term over the dataset and
combines the former with the inverse of the latter to calculate
a measure of importance for each term in the dataset. The
higher the value of the TF-IDF measure for a term, the more
probable the term is to contribute to the label prediction.

We apply the TF-IDF technique on natural language textual
data of commits and issues and the code diff textual data
separately. This generates three vectors of TF-IDF features for
each data point. Then, we concatenate the resultant vectors and
construct one textual feature vector per data point. The reason
for such an approach is that the information and vocabulary
in issues and commits inherently differ. Moreover, according
to our experiments, this approach leads to higher accuracy
compared to when we combine the three input data first and
then apply the TF-IDF technique on the concatenated text.
Our textual features are a commit’s Message and Diff, and
an issue’s Summary and Description. Note that we have also
applied Word2Vec and Doc2Vec techniques, however, TF-IDF
embeddings produced the best result.

2) Non-textual Feature Engineering: In the case of highly
correlated columns, reducing them to a single column can
improve the computational costs of the model training process
by limiting the number of optimization parameters, while
preserving the performance of the classifier. We extensively
inspect the dataset for such strongly correlated columns among
commit features an issue features by calculating the similarity
and correlation among the columns of similar types. We
discover that among the issue data columns, over 99% of the
data points have the same value as the reporter and the creator.
This makes these two columns practically duplicate. Hence,

we drop one and keep the other. We also detect that over 65%
of the data points have the same author and committer in their
commit data columns. As we believe a similarity of 65% is
not high enough to justify the omission of one of the columns,
so we keep both columns in the dataset.

Since the categorical data will be converted to a one-hot
model, each distinct value in the categorical data column will
serve as a Boolean feature. Thus, the multitude of distinct
values in a categorical column results in an over-complicated
feature vector with too many features but very few true points,
also known as a sparse matrix. To avoid such an occurrence,
we study the histograms of the categorical data and discovered
that due to differences in labeling style across projects, the
distinct values of the commit status and issue type columns
can be mapped to two reduced sets of values. For commits,
status values was reduced from a set of 11 statuses to three
main categories of open, closed, and resolved. We also reduced
the set of 15 distinct values of issue types to three main
categories of task, new feature, and bug.

While there are two columns of highly correlated dates
for issues, namely the create date and the update date, these
dates prove as important features for the prediction of True
Links. The same goes for the author time date and the
commit time date among the data of the commits. We keep
these columns intact to the dataset.

Finally, we drop the columns which have a significant
number of null values. After one-hot transformation of the
categorical data, we calculate the correlations among all the
columns, including the label column, for issues and commits
separately. This is to verify that there are no correlations
among the features and target column. After it is verified that
the dataset is not biased, the resultant commit and issue feature
vectors are concatenated to compose a single feature vector
for each data point. Our non-textual features are commit time,
authoring time, author hash, and commit hash of commits. We
also include updated date, created date, status (closed, open,
resolved), issue type (bug, new feature, task) and creator hash
from issue reports.

D. Model Training

We aim to keep the classifier model simple to lower the
computational costs of training and prediction. We believe
one can improve the prediction accuracy of these models by
augmenting the input data. To do so, we leverage both textual
and non-textual data on the commits and issues and construct
a hybrid model by training two classifiers, one that operates
on textual data and calculates the probability of labels, and
another one that does the same using non-textual data.

1) Textual Classifier Model: As the textual classifier com-
ponent, we train multiple classification models, namely a
Decision Tree (DT), a Gradient Boosting (GB), a Logistic
Regression (LR), and a Stochastic Gradient Descent (SGD)
model to choose the model with the best performance among
them. We feed these models the resultant feature vectors from
Section III-C1 and train them. The trained models take as input
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Fig. 3: Overview of ensemble models for non-textual classifier
component

the processed vector of textual data and predict a label, either
True or False Link for an issue-commit pair.

2) Non-textual Classifier Model: Here, we also use single
and ensemble models to achieve the best results [8]. As
simple classifier models, we train a Gradient Boosting [9],
a Naive Bayes (NB) [10], a Generalized Linear (GL), a
Random Forest (RF) [11], and a XGBoost [12] model. To
construct the ensemble models, following the overview illus-
trated in Figure 3, we combine the models and make four
ensemble models accordingly. The ensemble models are a
RF + GB, a GB + XGBoost, a RF + XGBoost, and a
RF +GB +XGBoost combinations.

E. Linear Accumulator Hyper-tuning

The last step in our approach is to combine the predictions
of the two classifier components and generate the final predic-
tion on the label of the data points. To do so, we combine the
predicted probability of a data point being a True Link from
the two components and with a linear accumulator function,
defined as the following:

Pf = α× Pnt + (1− α)× Pt (1)

in which Pf is the final calculated probability of a commit-
issue pair being a true-link, Pnt is the probability of the same
pair being a true-link according to the non-textual classifier
component, and Pt is the same probability according to the
textual classifier component.

In Equation 1, α is the hyper-parameter by which we
tune the model to produce the best results tailored to the
characteristics of each project. To do so, we vary the value
of α from 0.00 to 1.00 in 0.05 steps. The value α by which
best results regarding the F1-score is yielded is taken as the
optimal α value.

IV. EXPERIMENTAL DESIGN

A. Research Questions

We define three Research Questions (RQ) to measure the
effectiveness of our proposed approach. We review these
questions in the following.

• RQ1: Compared to the state-of-the-art approaches, how
effective is our approach in recovering the missing links
between issues and commits? To answer this question,
we evaluate our method’s performance using the 20MAD
dataset (reviewed in the next section) [7]. We use 12
projects from this dataset for training and testing our
model. There are different approaches for commit-issue
recovery. We use two of the state-of-the-art models,
namely FRLink [6] and DeepLink [2], to compare with
the proposed approach.

• RQ2: How to combine the two components of the model
to achieve the best outcome? There are different ways to
combine our two models (textual and non-textual). With
this question, we aim to identify the best method to build
a hybrid model.

• RQ3: What is the effect of each component of the
model on the outcome? As our model is constructed of
different components, we assess the benefits of adding
each through an ablation study. That is, we evaluate the
model using each of the two components separately and
then compare the results by those of the Hybrid-Linker.

B. Data Selection

As the data of previous work were not publicly shared, we
utilized the dataset presented by Claes and Mantyla [7] in
the MSR conference, 2020. From the Apache projects, we
chose 12 based on two criteria; (1) having a repository with
more than 500 stars (to have good input data for training
the models), and (2) having a diverse number of issues for
different projects (to be fair). As of September 2020, the
number of stars for the selected projects was in the range
of 580 to 18800. The second criterion let us choose projects
with different number of issues from small to large software
projects. The number of issues among our projects range
from a couple hundred to more than 25K issues. To prepare
this data for feeding our Machine-Learning-based models, we
complement and transform the selected 12 projects from the
20MAD dataset as explained in Sections III-A and III-B.

C. Evaluation Metrics

As previously used in the related work, we use three metrics
of Precision, Recall, and F-measure to evaluate the perfor-
mance of the approach [2], [6]. These metrics are calculated
using the following equations.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision×Recall

Precision+Recall
(4)

D. Experiment Setting

For preprocessing, we use Pandas [13] library. For training
the classifiers in the non-textual component of our approach,
we use H2O.ai [14] library. H2O benefits from distributed, in-
memory processing which results in faster models. It is also
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able to manage hash data better than the Sci-Kit Learn [15]
library. This library can be used in different programming
languages such as Python and R. We use the Python version
and added a Java Runtime Environment for the backend. For
the textual component, we use the Sci-Kit Learn library. It has
great I/O which lets us use different types of data like Parquet
and Pickle files simultaneously.

We use five-fold cross-validation to evaluate the models
more thoroughly. That is, we break the data into five parts
randomly, choose one as the test set and use the others for
training. After repeating this process five times, iterating over
the parts as the test set, we report the average as the result
of evaluations. This also helps with the generalizability of the
approach and avoiding the overfitting problem.

To find the best parameters for the ensemble model in the
non-textual component, we perform a Random Grid search for
each project of the dataset. The result of the search indicate
that (n trees=60, max depth=15, min rows=2, learn rate=0.1,
learn rate annealing=1) for the Gradient Boosting model and
(n trees=60, max depth=15, min rows=2, learn rate=0.1) for
the XGBoost model are the best choices.

To find the best parameters for the Gradient Boosting in the
textual component, we perform another Random Grid search
for each project of the dataset. The result of the search indicate
that (n estimators=300, max features=None, max depth=50
and learning rate=0.1) are the best choices.

To build the TF-IDF embedding vectors, we experiment
with unigram, bigram, and union of unigram, bigram, and tri-
gram word embedding. The best case is the union of unigram,
bigram, and trigram as it finds all the important individuals
and combinations of words. For TF-IDF embeddings, we set
a maximum number of features to 10K.

For all of our experiments, we used the same machine with
32GB memory and a 4-core Intel i7-7700k 4.2G processor.

The baselines here are FRLink [6] and DeepLink [2]
as they achieve the state-of-the-art results in the problem
of automatically recovering links between issues and their
corresponding commits. FRLink uses a set of features and
complementary documents such as non-source documents to
learn from relevant data for recovering links [6]. They analyze
and filter out irrelevant source code files to reduce data noise.
On the other hand, DeepLink uses a semantically-enhanced
link recovery method based on deep neural networks [2].
The authors apply a recurrent neural network on the textual
information of issues and commits for training their model.
They also disregard issue comments due to their length and
noise. While DeepLink outperforms FRLink in terms of F-
measure, it achieves lower recall scores [2]. Thus, we use both
these techniques here as the baselines to compare our approach
with. We use the replication packages provided by Ruan et
al. [2] for these two models4. We slightly modified their input
reader function to be able to read our data. Moreover, we set
all the parameters as specified in the original papers.

4https://github.com/ruanhang1993/DeepLink

TABLE III: The average performance of models on textual
data.

Project Recall Precision F-measure

Decision Tree 73.30% 73.58% 73.25%
Gradient Boosting 78.27% 78.38% 78.25%
Logistic Regression 64.60% 65.08% 64.55%
Stochastic Gradient Descent 63.67% 63.91% 63.61%

TABLE IV: The average performance of models on non-
textual data.

Method Algorithm Recall Precision F-measure

Simple
Method

Gradient Boosting(GB) 100% 96.34% 85.50%
Naı̈ve Bias 100% 66.97% 73.77%

Generalized Linear 100% 88.98% 76.18%
Random Forest(RF) 100% 98.25% 84.55%

XGBoost 100% 98.67% 86.14%

Ensemble
Method

RF + GB 100% 98.29% 86.61%
GB + XGBoost 100% 98.73% 87.81%
RF + XGBoost 100% 99.27% 87.10%

RF + GB + XGBoost 100% 98.81% 87.77%

V. RESULTS

In this section, we answer the research questions by pro-
viding the results of the experiments. We first, compare the
performance of our proposed approach with the state-of-the-
art ones. Next, we review the results of our investigations on
how to build a hybrid model. Finally, we present the results
of the ablation study to show the effectiveness and impact of
each component of the proposed approach.

a) RQ1: Compared to the state-of-the-art approaches,
how effective is our approach in recovering the missing links
between issues and commits? To answer this RQ, we built our
approach with two classifier components, a textual classifier
and a non-textual one that each predict the probability of
a issue-commit pair being a true-link. We plugged multiple
classifier models into each of the said components and chose
the models with best performances as our proposed ones.

For the textual classifier component, we fed the concate-
nated TF-IDF vectors to four classifier models widely used for
text classification purposes and study the results to determine
the best performance among the models. Table III shows the
outcome of the trained models. The results indicate the best
algorithm for classifying issue and commits linkage based on
their textual data is the Gradient Boosting model.

For training a classifier on non-textual information, we
experimented with well-known classical classifiers to identify
the best classifier for our case. As seen in Table IV Gradient
Boosting, Random Forest, and XGBoost have higher overall
metrics results. Moreover, ensemble methods have been shown
to outperform simple models. Thus, we also opt for an
ensemble model of the above algorithms to identify the best
combination here. Based on results in Table IV, the ensemble
of Gradient Boosting and XGBoost produce the best result
for our non-textual data. Table IV reports the average score of
precision, recall and F-measure for each model.

6
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The effectiveness of our proposed method is evaluated based
on three metrics, namely Precision, Recall, and F-measure.
Table V presents a summary of the average performance of
our approach across projects. According to the results, our
approach achieves an average of 90.14% on Recall, 87.78%
on Precision, and 88.88% of F-measure. Respectively, the
lowest Recall is 84.41% for Arrow and the highest is 100% for
Cassandra project. On the other hand, the lowest precision is
81.81% for Cassandra and the highest is 96.04% for Ambari.

We compare our approach with two of the competing
models, namely FRLink and DeepLink. On average, our
approach has 34.17% higher precision and 21.21% higher
F-measure scores than FRLink. Although FRLink achieves
higher recall than our proposed approach, its precision score
is much lower compared to our model. Hence, Hybrid-Linker
ultimately outperforms FRLink based on F-measure which is
the harmonic mean of recall and precision. Moreover, obtain-
ing high recall but low precision calls for manual assessment
of the predictions. That is, a developer needs to check the
predicted links and remove the incorrect ones. This adversely
affects the automated feature of the approach.

Hybrid-Linker outperforms DeepLink by 50.40%, 26.99%,
and 41.34% regarding the average recall, precision, and F-
measure. Previous studies have shown deep learning-based
models tend to outperform classical machine learning models.
However, as shown in a study by Hellendoorn et al. [16], it
is possible to achieve better results using simple and well-
engineered approaches compared with vanilla deep neural
networks. According to our results, we are also able to surpass
DeepLink as we carefully inspect the domain of the problem,
identify and incorporate more relevant information from the
non-textual channel in addition to the textual information of
issues and commits. Evidently, these types of information can
help boost the performance of automatic link recovery models.
Our results are also compatible with those reported by Ruan et
al. [2] where the overall recall score of FRlink is higher than
DeepLink. However, Ruan et al. [2] originally evaluated using
six projects with almost identical number of true/false links,
while in this study we have included 12 projects with various
number of true/false links and sizes to improve diversity of our
dataset. This may cause the drop in individual scores reported
in this work and Ruan et al.’s [2] study (regarding comparison
with FRlink).

Furthermore, our approach uses fewer computational re-
sources and time while training the models. For instance,
pertaining the Airflow project, the required time to train
Hybrid-Linker is 25 minutes, while it takes about 7 hours to
train DeepLink. able VI provides execution times per project.
DeepLink has also reported a 5X overhead comparing their
approach to FRLink. The large overhead of DeepLink is
probably due to the complex nature of deep models. Our
results indicate we can train simpler models which incorporate
more relevant information, thus, achieving higher accuracy and
less overhead.

We also calculated the standard deviation of the F-measure
for the 12 projects in the dataset. Taking all projects into

account, the standard deviations of the F-measure are 3.01,
3.92, and 4.68 for Hybrid-Linker, DeepLink, and FRLink,
respectively. That is, our approach is more stable than the other
two, hence proving to be a more generalizable approach.

b) RQ2: How to combine the two components of the
model to achieve the best outcome? To incorporate as much in-
formation as possible and consequently boost the performance,
we propose a hybrid model of our two distinct classifiers. To
combine the predictions of the two components, we create a
linear composition of their outputs.

Figure 4 presents the results of using different values of
alpha ranging from 0 to 1 for the 12 projects under study. As
can be seen, each project requires a different value of alpha.
Thus, selecting a constant alpha for all projects will result in
weaker results.

Table VII lists the best α values for each project. In
most cases, α is above 0.5, with the average α being 0.66
for all the projects. This means, interestingly, in most cases
the non-textual component plays a more important role in
the final decision making of Hybrid-linker. This highlights
the importance of incorporating these types of information
while recovering links. The only exception to this finding
occurs in the Ambari project with α of 0.45. This implies
an approximately equal contribution of the two components
of our proposed approach for this project. On the other hand,
for Calcite, the best results are achieved with an α of 0.95.
This can be a indicator that this project lacks adequate textual
information useful for recovering links.

c) RQ3: What is the effect of each component of the
model on the outcome? In this section, we present the results
of our ablation study on assessing the effect of each component
of the proposed model. Table VIII presents a summary of
our model’s performance based on each project. The results
indicate that on average, the performance of the textual model
is lower than both the non-textual and hybrid models. The
textual model also marks the highest standard deviation among
the models with 5.83. Interestingly, the non-textual model
outperforms the hybrid model regarding precision by 4.38%.
On the other hand, the standard deviation of the non-textual
model is 3.10 which is slightly higher than the standard devi-
ation of the hybrid model, 3.00. As natural language is more
complex, text-based approaches may require more complex
techniques to perform fairly good. The higher performance of
the non-textual component is probably due to (1) having more
explicit data, and (2) the advantage of ensemble models. To
conclude, the hybrid model has higher recall and F-measure
scores. It also obtains the lowest standard deviation regarding
its performance on all the projects. This means, by employing
both of the textual and non-textual components, the hybrid
model achieves higher results, while preserving the stability
of the proposed approach.

A. Discussion

Here, we present an example where our model successfully
recovers the True Link between an issue and its correspond-
ing commit. Table IX summarizes the information of these
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TABLE V: Performance of the models

Hybrid-Linker DeepLink FRLink
Project Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

Beam 85.77% 86.22% 85.99% 82.63% 55.15% 66.15% 100% 50.43% 67.05%
Flink 91.91% 89.69% 90.79% 43.98% 63.43% 51.94% 88.63% 61.80% 72.82%

Freemarker 88.89% 91.42% 90.14% 95.83% 100% 97.87% 97.22% 61.40% 75.26%
Airflow 87.80% 85.72% 86.75% 44.54% 64.45% 52.67% 94.32% 66.77% 78.19%
Arrow 84.41% 83.71% 84.06% 16.85% 44.65% 24.47% 99.90% 52.14% 68.52%

Netbeans 88.84% 85.66% 87.22% 57.39% 73.56% 64.48% 92.93% 62.65% 74.85%
Ignite 90.82% 89.59% 90.20% 68.58% 70.16% 69.36% 100% 50.71% 67.29%
Isis 88.13% 89.84% 88.98% 47.78% 74.80% 58.31% 100% 49.39% 66.12%

Groovy 89.15% 87.79% 88.47% 47.65% 62.5% 54.07% 94.26% 54.83% 69.33%
Cassandra 100% 81.81% 90% 72.72% 84.21% 78.04% 100% 45.76% 62.79%

Ambari 97.13% 96.04% 96.58% 87.50% 72.11% 79.06% 98.57% 62.13% 76.22%
Calcite 88.85% 85.89% 87.34% 55.58% 60.74% 58.04% 96.55% 61.80% 75.36%

Avg. 90.14% 87.78% 88.88% 60.09% 68.81% 62.87% 96.86% 53.61% 67.67%
Diff from Hybrid-Linker (-30.05%) (-18.97%) (-26.01%) (+6.72%) (-34.17%) (-21.21%)

TABLE VI: execution time for each project on our hardware

Project Hybrid-
Linker

DeepLink Project Hybrid-
Linker

DeepLink

Beam 35m 19h Flink 2h 3d
Freemarker 11.5s 30m Airflow 25m 7h

Arrow 35m 6h Netbeans 7m 25d
Ignite 22m 13.5d Isis 28m 23h

Groovy 54m 13h Cassandra 33m 6h
Ambari 4h 7.5d Calcite 31m 6h

TABLE VII: Best value of Alpha per project

Project Alpha Project Alpha Project Alpha

Beam 0.7 Ignite 0.65 Flink 0.6
Isis 0.55 Freemarker 0.6 Groovy 0.55

Airflow 0.65 Cassandra 0.75 Arrow 0.7
Ambari 0.45 Netbeans 0.8 Calcite 0.95

two artifacts. Although there are few similarities in textual
information, the baselines and our textual component are
unable to recognize this connection. However, our non-textual
component compensates for this shortcoming and predicts the
correct connection. As it is shown, our model is capable
of correct predictions both (1) when there is little textual
information available or (2) when there is no explicit relation
among the text of the two artifacts. Note that non-textual data
are often available as they are automatically recorded.

B. Threats to Validity

Here we discuss the threats to the validity of our work,
organized into internal, external, and construct validity.

a) Internal Validity: Internal validity is the extent to
which a piece of evidence supports a claim about cause and
effect, within the context of a particular study [17]. The first
threat to the internal validity of our study is the True Link
trustworthiness and False Link trustworthiness in our dataset.
In the case of building True Links, we have used the links
provided by Claes and Mantyla in [7]. Although this dataset
is validated by the authors [7], incorrect links may still be
present due to human error. Any combination other than a
True Link can be considered a False Link. However, due
to the diversity and multitude of choices for creating False

Links, we had to employ several constraints as explained in
Section IV-B. These constraints affect our results. According
to previous studies, if an issue is related to a commit, there is
a higher chance it will be answered/solved by a commit within
seven days. Thus, by creating different combinations of False
Links within seven days, we aim to create a more relevant
and appropriate False Link dataset for training the models.
Lastly, data balancing is an important issue to keep in mind.
Although one can easily create a large number of False Links,
lack of enough True Links adversely affects the performance
of classifiers. To tackle this problem, we balanced the dataset
by selecting a random subset of the over-presented class before
training. Other balancing techniques are also viable.

b) External Validity: External validity is concerned with
the generalizability of the approach and results [17]. In that
regard, the dataset used in this study affects the outcome of
the models. The size and quality of the data play an important
role in having a good issue and commit link predictor. We
addressed this threat by evaluating our approach against data
from multiple projects and studying the results. As discussed
in Section V, the lower standard deviation achieved by Hybrid-
Linker indicates that results from this approach are more stable
across projects. That is, the approach is more generalizable
than the state-of-the-art baselines and produces results in an
expected range when applied on data from different projects.

c) Construct Validity: Construct validity is concerned
with the evaluation of the models [17]. Similar to previous
work [1]–[3], [6], [18], we use precision, recall, and F-
measure to evaluate the performance of our approach. To
evaluate our proposed model more fairly, we also use five-
fold cross-validation in all model evaluation steps of the study
and report the average of the metrics. By breaking data into
five smaller chunks and re-evaluating the model, we ensure
that all of the data has been used for training and testing.

VI. RELATED WORK

In this section, we review the related studies with the
purpose of linking issues to their corresponding commits.
We categorize these approaches into three major groups of
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Fig. 4: Tuning Alpha per project
TABLE VIII: Results of the ablation study

Hybrid method Textual-based Non-textual-based
Project Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

Beam 85.77% 86.22% 85.99% 76.35% 76.35% 76.35% 84.64% 86.46% 85.54%
Flink 91.91% 89.69% 90.79% 82.52% 82.52% 82.51% 89.77% 90.32% 90.05%

Freemarker 88.89% 91.42% 90.14% 87.32% 88.10% 87.27% 93.93% 86.11% 89.85%
Airflow 87.80% 85.72% 86.75% 76.30% 76.30% 76.30% 81.50% 91.52% 86.22%
Arrow 84.41% 83.71% 84.06% 75.01% 75.10% 75.02% 74.98% 90.40% 81.97%

Netbeans 88.84% 85.66% 87.22% 74.64% 74.76% 74.62% 82.37% 95.53% 88.46%
Ignite 90.82% 89.59% 90.20% 79.99% 80% 79.99% 90.07% 88.60% 89.33%
Isis 88.13% 89.84% 88.98% 86.30% 86.32% 86.30% 87.08% 90.04% 88.53%

Groovy 89.15% 87.79% 88.47% 85.62% 85.6% 85.60% 81.20% 91.45% 86.02%
Cassandra 100% 81.81% 90% 81.36% 81.45% 81.38% 84.37% 100% 91.52%

Ambari 97.13% 96.04% 96.58% 92.10% 92.12% 92.10% 93.37% 95.86% 94.73%
Calcite 88.85% 85.89% 87.34% 72.47% 72.48% 72.46% 83.55% 93.27% 88.14%

Avg. 90.14% 87.78% 88.88% 80.83% 80.92% 80.82% 85.57% 91.63% 88.36%

TABLE IX: An example of a True Link prediction

Issue Information Commit Information

created date: 2014-12-08 author time date: 2014-12-10
updated date: 2014-12-10 commit time date: 2014-12-10
summary: “copy method logicalaggregate not copying indi-
cator value properly”

message: “[ calcite-511 ] copy method logicalaggregate not copying indicator value
properly fixes # 26”

description: “{ { copy } } method { { logicalaggregate }
} not take value { { indicator } } boolean input parameters
object itself.”
bug: 1, new feature: 0, task: 0

DiffCode: “logical aggregate .java logical aggregate .java logical aggregate .java trait
set .contains applicable convention none logical aggregate rel input immutable bit set
group set immutable bit set group set aggregate call agg call logical aggregate get cluster
group set logical aggregate get cluster group set group set agg call”

creator key: 59f263ad6f803c44d2c8d5a716571218af230278 author: a0465f128099ac027df4ee3910ee43aa66ad154b
closed: 1, open: 0, resolved: 0 committer: 0dc204239e76b8945e61c77525ac8f7386763a23
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heuristic-based, Machine-Learning-based, and Deep-learning-
based studies.

a) Heuristic-based approaches: These studies simply
define a set of heuristics to find the links between issues
and commits. ReLink [19], MLink [20], and PaLiMod [18]
fall into this category. Wu et al. [19], introduced ReLink,
an approach that builds on top of traditional heuristics for
creating True Links. The traditional heuristics used in this
work mostly rely on hints or links developers leave about bug
fixes in changelogs. For instance, they search for keywords
such as ‘fixed’ and ‘bug’, or bug ID references in changelogs.
Moreover, they would try to find the link by using features
extracted from linked issues and commits. They obtained 89%
precision and 78% recall on average. Nguyen et al. [20]
presented MLink, a layered approach that exploits both textual
and code-related features. They outperform ReLink by 13% to
17% on recall and 8% to 17% on precision [20]. However, they
used only three projects when evaluating their work. Moreover,
their results showed that some individual layer’s precision or
recall are very low. Finally, Schermann et al. [18] introduced
PaLiMod to enable the analysis of interlinking characteristics
in commit and issue data. They used this analysis to define
their heuristics. PaLiMod achieves a precision of 96% and
recall of 92% in the case of the Loner heuristic which are
single commits with no link to the addressed issues. Also, their
method reach overall precision of 73% with a recall of 53% in
the case of the Phantom heuristic which are commits without
a link in a series of commits that address a certain issue.
Although the idea of the Phantom case was novel, the results
were not significant compared to former heuristic methods
such as MLink. One of the drawbacks of these studies is using
a manually-created dataset by the authors themselves [21].
Most of these cases used manually labeled data which reduces
the confidence in the results.

b) Machine-Learning-based approaches: The second ap-
proach to recovering links is to use traditional binary classifi-
cations, including RCLinker [3], FRLink [6] and PULink [1].
RcLinker employed ChangeScribe, a tool for creating a
commit message and used a set of features to recover the
links. They outperformed MLink in terms of F-measure by
138.66% [3]. ChangeScribe creates highly detailed commits
which are not very suitable for feature extraction in this
context. Recently, FRLink was introduced which uses its own
set of features [6]. The authors also use complementary doc-
uments such as non-source documents to learn from relevant
data They analyze and filter out irrelevant source code files
to reduce data noise. FRLink outperforms RCLinker in F-
measure by 40.75% when achieving the highest recalls. How-
ever, their approach encounter problems when (1) a dataset
has a low percentage of non-source documents in commits, or
(2) it has few or no similar code terms in the issue report and
corresponding fixing commits. Also, text and code features
were equally weighted in this approach. A close study to
FRLink is PULink [1], where authors labeled their data as a
True Link/unlabeled instead of True/False Links. They claim
they can obtain the same value of precision and recall with

almost 70% of the number of True Links in other approaches.
However, they too had a problem when a dataset has a low
percentage of True Links. Generally, the main problem of
these studies is the low performance based on metrics like
F1, precision, and recall. Although FRLink achieves higher
recall scores, its precision and F1 are very low.

c) Deep-Learning-based approaches: Xie et al. [22]
proposed DeepLink [22], which incorporates a knowledge
based graph and deep learning to solve this problem. Using
class embeddings in commit codes, the authors created this
graph. Authors also use CBOW and Word2Vec embedding
for commit and issue documentation. As we did not have
access to the knowledge graph and replication package, we
were not able to replicate this approach. Another publication
also named DeepLink [2] uses a semantically-enhanced link
recovery method based on deep neural networks to tackle
this problem. The authors use recurrent neural networks on
the textual information of issues and commits to train their
model. They disregard comments because of their length and
noise. They have added semantic to their model to have a
better prediction. DeepLink outperforms FRLink in terms of
F-measure by 10% [2]. The challenge with deep learning
algorithms lies in the need for a large amount of data and
high computational resources. Moreover, training these models
takes a lot of time.

We propose a model that outperforms the baselines by
exploiting information from both textual and non-textual chan-
nels. We use fewer resources and our training and prediction
time are much lower. We also train with projects where fewer
issues and commits are available. Thus our model will not fail
when there is little historical data available for a project.

VII. CONCLUSION AND FUTURE WORK

The importance of recovering true connections between
issues and their corresponding commits greatly affects various
software maintenance tasks. Previous studies mostly focused
on exploiting textual information to train their models to
identify the links. However, we introduced a hybrid method,
called Hybrid-Linker based on classical ML-based classifiers,
that employs both textual and non-textual information to
recover the links. For each project, we tune alpha, as an
indication of the importance of each information channel. The
results suggest that the non-textual information indeed help
the predictions. This is highlighted in cases that there is little
textual information available. Moreover, our approach requires
shorter training time and outperforms both the competing
methods, namely DeepLink [2] and FRLink [6] by 41.3% and
31.3% on F-measure, respectively.

In the future, we plan to boost our proposed classifier by
identifying new features from different bug tracking and ver-
sion control systems. We will also investigate other classifier
architectures.
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