Accepted for publication in Empirical Software Engineering
(to appear in 2023)

On the usage, co-usage and migration of CI/CD
tools: a qualitative analysis

Pooya Rostami Mazrae - Tom Mens -
Mehdi Golzadeh : Alexandre Decan

Preprint — January 2023

Abstract Continuous integration, delivery and deployment (CI/CD) is used
to support the collaborative software development process. CI/CD tools auto-
mate a wide range of activities in the development workflow such as testing,
linting, updating dependencies, creating and deploying releases, and so on.
Previous quantitative studies have revealed important changes in the land-
scape of CI/CD usage, with the increasing popularity of cloud-based services,
and many software projects migrating to other CI/CD tools. In order to under-
stand the reasons behind these changes in CI/CD usage, this paper presents
a qualitative study based on in-depth interviews with 22 experienced software
practitioners reporting on their usage, co-usage and migration of 31 different
CI/CD tools. Following an inductive and deductive coding process, we anal-
yse the interviews and found a high amount of competition between CI/CD
tools. We observe multiple reasons for co-using different CI/CD tools within
the same project, and we identify the main reasons and detractors for mi-
grating to different alternatives. Among all reported migrations, we observe
a clear trend of migrations away from Travis and migrations towards GitHub
Actions and we identify the main reasons behind them.

Keywords CI/CD - Collaborative Software Development - Workflow
Automation - Qualitative Analysis - Empirical Software Engineering

This version of the article has been accepted for publication, after peer review but is
not the Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at: https://dx.doi.org/10.1007/
510664-022-10285-5. Use of this Accepted Version is subject to the publisher’s Accepted
Manuscript terms of use https://www.springernature.com/gp/open-research/policies/|

accepted-manuscript-terms

P. Rostami Mazrae, T. Mens and M. Golzadeh
Software Engineering Lab, Université de Mons, Mons, Belgium
E-mail: firstname.lastname@umons.ac.be

A. Decan (F.R.S.-FNRS Research Associate)
Software Engineering Lab, Université de Mons, Mons, Belgium
E-mail: alexandre.decan@Qumons.ac.be

https://dx.doi.org/10.1007/s10664-022-10285-5
https://dx.doi.org/10.1007/s10664-022-10285-5
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 Pooya Rostami Mazrae et al.

1 Introduction

Continuous integration and deployment (CI/CD) is considered a crucial prac-
tice to support collaborative software development [1}[2]. CI/CD gained its
popularity as a software engineering practice thanks to the eXtreme Program-
ming methodology introduced by Beck et al. [3]. CI/CD helps to automate
a wide range of activities during software production, including compilation,
building, testing, quality assurance, dependency and security management,
creating releases, and many more [4H7]. As a result, CI/CD helps to produce
higher quality software releases at a faster pace and with less effort [8]. This
has led CI/CD (that we will henceforth abbreviate to CI) to become one of
the most important collaborative software development practices for compa-
nies and open source software (OSS) communities worldwide. Its use ensures
integrity and control over all changes made to the software project [94(10].

There is a wide range of CI tools to help developers automate their de-
velopment workflow. Popular examples of contemporary CI tools are GitHub
Actions, GitLab CI/CD, Azure DevOps, CircleCI, Jenkins, and Travis. Each
of them has its own benefits to accommodate the specific needs and constraints
of individual software projects [10].

Recently, the landscape of CI tools has witnessed important changes due
to the emergence of new competing tools, support for more operating systems
in existing Cls, changes in billing policies, changes in the company or commu-
nity structure of the CI tool provider, reliability and performance of the CI
services being provided, and many more [10]. In particular, the introduction
in November 2019 of GitHub Actions (that we will henceforth abbreviate to
GHA) as a fully integrated CI service on GitHub has led both new and exist-
ing GitHub repositories to adapt or migrate to this service as their primary
CI tool [11,]12]. At the same time, Travis has exhibited a progressive decrease
in popularity these recent years, due to a combination of quality of service
problems and restrictions imposed on its free plan for OSS projects |11]. In
light of these important recent changes in the CI landscape, this article has
two main research goals:

G1: As the first goal, we aim to understand the rationale behind how and why
experienced developers in commercial and OSS projects rely on specific
CI tools, and how this usage has changed in comparison with previously
reported research studies. This goal is broken down in five specific research
questions:

RQ1.1 Which CI tools are being used?

RQ1.5 What are the main reported reasons for using CI?
RQ1.3 Which activities are being automated by CI tools?
RQ1.4 What are the most valuable features of these CI tools?
RQ@;1.5 What are the reported shortcomings of these CI tools?

Go: As the second goal, we aim to understand the reasons for co-using dif-
ferent CI tools simultaneously, as well as the reasons for migrating from

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 3

one CI tool to another. This goal is motivated by the recent changes in the
CI landscape on GitHub, the most popular software development hosting
platform for OSS projects today. Less than 18 months after its introduc-
tion [11], GHA became the most widely used CI tool on GitHub, taking
over Travis that has been available and dominant for years on GitHub.

RQ2.1 Why are multiple CI tools co-used simultaneously?
RQ2.2 Why do software projects migrate to a different CI tool?
RQ@2.3 What are the difficulties in carrying out a CI migration?

In order to achieve these goals and to provide answers to the eight re-
search questions, we carried out a qualitative analysis by conducting in-depth
interviews with 22 experienced software practitioners.

The remainder of this paper is organised as follows. Section [2| presents the
related work of earlier empirical studies related to CI usage. Section [3] intro-
duces the design, setup, and process of the qualitative study we conducted.
Based on the insights obtained from the interviews, Section [4 answers the re-
search questions for goal G, while Section[f]focuses those for goal G5. Section|[g]
discusses some additional insights related to our findings. Section [7] presents
the threats to validity of the conducted study. Finally, Section [§] concludes.

2 Related work
2.1 CI/CD usage practices

Probably the best entry point to CI/CD usage practices are the systematic
literature reviews (SLR) by Shahin et al. [2] and Soares et al. [10].

The SLR of Shahin et al. |2] covered 69 scientific articles published up to
2016. Its aim was to synthesize the reported approaches, tools, challenges, and
practices for adopting and implementing continuous practices. The included
studies mostly show an increase in adoption of continuous practices, and dis-
cuss the integration problems faced by projects trying to use these practices.
They also report that teams mostly use continuous practices to reduce build
and test time, increase the visibility and awareness on build and test results,
detect violations, flaws, and faults, and improve the deployment pipeline w.r.t.
security, scalability, dependability and reliability. While the authors identified
30 approaches and associated tools, many of the CI tools in our own anal-
ysis (e.g., GHA, Travis, CircleCI, Azure DevOps, AppVeyor) were not even
mentioned by this SLR. One of the reasons for this was that the SLR was
considerably broader in scope than our study, including also tools for version
control, build systems, code quality analysis, testing, configuration, provision-
ing and deployment.

The SLR by Soares et al. [10] covers 101 scientific articles reporting on
the use of CI and published prior to 2019. The SLR aimed at identifying
and interpreting empirical evidence regarding how CI impacts software de-
velopment. CI usage was reported to correlate with improved productivity,
efficiency, and developer confidence. CI practices were observed to benefit the

4 Pooya Rostami Mazrae et al.

software process by promoting faster iterations, more stability, predictability,
and transparency in the development process. CI also benefits pull-based de-
velopment by improving and accelerating the integration process. The SLR
concluded that most of the existing research highlighted the positive effects of
CI usage, leaving room to study the challenges and shortcomings of using CI
tools. Since this SLR did not consider any publications after 2019, it did not
include any study reporting on the impact of GHA on the CI landscape, given
that GHA was only publicly introduced as a CI service in November 2019.

The aforementioned SLRs included many publications on how CI/CD prac-
tices have been implemented in different environments in order to identify
their potential benefits [5,/13H16], challenges and shortcomings [6,/17,/18]. This
reflects the importance of CI/CD practices and their impact on software de-
velopment practices. In the following subsections we narrow down on case
studies that explored the use of CI/CD (Section , as well as the specific
use of Travis (Section and, more recently, by GHA (Section [2.4).

2.2 Case studies on CI/CD usage

Chen [13]/17] reported on the benefits and adoption challenges of CD practices
in Paddy Power, a large company. Among the achieved benefits from CD
adoption, he reports an accelerated time to market, the ability to build the
right product, an improved productivity and efficiency, the increased reliability
of releases, as well as an improved product quality and customer satisfaction.

Betz et al. [19] studied the impact of adopting a CI tool to develop AM-
BER, a molecular dynamics software package widely used in chemical industry.
They report an improved collaboration and communication between globally
distributed developers. The CI tool also enabled real-time reporting of failure
and benchmark information, a task that would be time-consuming for individ-
ual developers to achieve by themselves.

Lu et al. [20] reported on a case study on D5000, a smart grid scheduling
support system. The results show that using continuous integration and auto-
mated testing resolves quality and integration issues effectively and efficiently,
without introducing considerable overhead.

Kulas et al. [21] reported on how CI practices helped to reduce the devel-
opment time of ARGOS (Advanced Rayleigh guided Ground layer adaptive
Optics System), a software designed to solve a specific problem with images
produced by a telescope. Commissioning time for an instrument at an obser-
vatory is costly, especially at night. Whenever astronomers come up with a
software feature request or point out a software defect, the software engineers
should find, implement and deploy a solution as fast as possible. Using Jenk-
ins to automate testing allowed the team to guarantee the correctness of the
proposed changes while respecting strict time constraints.

Gmeiner et al. [22] carried out a case study on the usage of CI tools in an
Austrian online business company. They highlighted the complex technical and

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 5

organizational challenges based on more than six years of practical experience
in establishing and maintaining an effective continuous delivery pipeline.

Savor et al. [8] carried out a mixed-method study of CI/CD usage at Face-
book and OANDA. The study revealed that the CD part of the used tools
could not be used to its full potential. For example, OANDA’s policies pre-
vented the company from fully embracing continuous deployment, leading to
delays in delivering new features to end-users.

Elazhary et al. |[16] conducted case studies with three software development
organizations that implemented CI practices, in order to identify the benefits
and challenges related to them. Based on interviews with 18 employees (de-
velopers, managers, team leads, and directors) they identified the following CI
practices: maintaining a source repository, automating the build, automating
the tests for a build, making daily commits to the mainline, ensuring that these
commits build on an integration machine, having fast builds, testing in a clone
of the production environment, providing a Docker executable of the latest re-
lease, ensuring visibility of the system state and changes, and automating the
deployment. Based on a trace-log analysis, the authors also studied the im-
pact of implementing these practices. Some observed good impacts were: min-
imizing merge conflicts, increasing consistency and reproducibility of builds,
more reliable bug detection, minimizing breaking changes, better and faster
developer and customer feedback, reducing build complexity and facilitating
onboarding. Some observed challenges were difficulties to test the UI, longer
build times due to automated tests, bottlenecks for committing due to PR
reviews, scalability issues, and increased maintenance effort. This reveals that
CI practices have their merits, but also bring along their own difficulties.

2.3 On the use of Travis in GitHub projects

There are many empirical studies that have studied the use of Travis, given
it was the dominant CI tool on GitHub. These studies cover various different
aspects such as the practices developers follow to use Travis [23], its benefits
and shortcomings [24], or the observed antipatterns [25].

Vasilescu et al. [4] conducted a quantitative analysis on 246 GitHub projects
to study the improvements that Travis can bring to the pull-based develop-
ment process. They observed a higher volume of pull requests being accepted,
and more defects being discovered thanks to Travis usage.

Hilton et al. [5] studied 34,544 OSS projects on GitHub and surveyed 442
developers to understand how developers use CI. They found out that there
are still many OSS development teams that do not use a CI tool due to a
lack of familiarity. However, among those that used a CI tool, 90% of them
used Travis. They reported that popular projects are more likely to use CI
and the median time for CI adoption is one year. They found that the use of
Travis helped developers to catch bugs earlier. They also found that projects
using Travis had more than twice as many releases and faster pull request

6 Pooya Rostami Mazrae et al.

integration time, while avoiding acceptance of pull requests that would break
the builds.

In an explorative analysis of Travis on GitHub, Beller et al. [6] found that
Travis usage had increased a lot by 2017, being used in one-third of popular
projects on GitHub. Their analysis of 2.6M+ Travis builds for Java and Ruby
projects revealed that Travis usage was highly focused on testing-related tasks,
primarily to enable developers to test their software across different OS envi-
ronments. However, the CI tool was not able to replace local testing because
of the high latency (often more than 20 minutes) between writing the code
and receiving feedback from the automated tests.

Gupta et al. [26] studied how the introduction of Travis impacted devel-
oper attraction and retention in 217 GitHub repositories. Contrary to their
expectations, they found statistical evidence that developer attraction and re-
tention in these projects was higher in the year before adopting Travis than
in the year after.

Widder et al. 7] quantitatively studied 7,276 GitHub projects that had
abandoned Travis. They observed that projects with more pull requests are
less likely to abandon Travis, while projects with more commits are more
likely to do so. They also observed that a project’s dominant language is an
important predictor for Travis abandonment. Finally, contrary to the intuition,
they found that projects with more complex configurations tend to be less
likely to abandon Travis. In a follow-up study, Widder et al. [27] identified the
pain points of Travis as a CI tool in software development projects on GitHub.
They used a combination of online surveys (132 respondents), interviews (12
respondents) and quantitative analysis using logistic regression on a dataset of
6,239 GitHub projects to predict Travis abandonment. Some of the identified
pain points were unsupported technology, long build times, infrequent changes,
poor user experience, and build failures.

2.4 On the use of GHA in GitHub projects

Due to its recent introduction in November 2019, there is only a limited number
of studies that have focused on GHA despite its impact on the CI landscape
on GitHub.

Golzadeh et al. [11] presented a longitudinal quantitative study on the use
of CI tools in over 91K GitHub repositories of distributed npm packages. They
observed that more and more repositories are relying on a CI tool, reaching
up more than 50% of the repositories in May 2021. They found that GHA
and Travis dominate the CI landscape and are used by 90% of the repositories
with a CI tool. They also found that GHA took over Travis in popularity in
only 18 months after its introduction, a consequence of many repositories that
started to use GHA instead of Travis.

Kinsman et al. [12] analysed the impact of adopting GHA in 3,190 reposi-
tories and observed that the adoption of GHA increases the number of rejected
pull requests and decreases the number of commits in merged pull requests.

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 7

Through a manual inspection of 209 issues related to GHA, they observed that
developers have an overall positive perception of GHA. These observations
were confirmed by Chen et al. [28] in a replication study on 6,246 repositories.

Valenzuela-Toledo and Bergel [29] investigated the use and maintenance of
GHA workflows in 10 popular GitHub repositories. They manually inspected
222 commits related to workflow changes and determined 11 different types
of workflow modifications. They uncovered a number of deficiencies in GHA
workflow production and maintenance, calling for adequate tooling to support
creating, editing, refactoring, and debugging workflow files.

Decan et al. [30] analysed the use of GHA in nearly 70K GitHub reposi-
tories in order the get a deeper insight into the GHA ecosystem. They found
that 43.9% of the repositories are using GHA workflows, and they character-
ized these repositories and their workflows, in terms of which jobs, steps, and
reusable Actions were used and how. They notably observed that workflows
are primarily used for development purposes, despite the fact that many other
kinds of activities could potentially be automated with GHA. They also ob-
served that nearly all workflows rely on Actions, which may be problematic
since issues in these Actions (e.g., bugs, security vulnerabilities, outdated or
obsolete components) can propagate to the workflows that use them, poten-
tially affecting the entire GHA ecosystem. They call for more in-depth empiri-
cal studies to provide a comprehensive understanding of the GHA ecosystem.

3 Methodology

The two goals of this article were defined with this related work in mind. Goal
(G1 aims to understand the rationale behind how and why experienced software
developers use specific CI tools, and how this usage has changed in comparison
with previously reported studies. Goal G aims to understand how developers
co-use CI tools and why they migrate to different CI tools, especially in the
light of the rapidly changing CI landscape due to the introduction of GHA on
GitHub. In order to achieve these goals, we carried out a qualitative analysis
by conducting semi-structured interviews with experienced software develop-
ers around the globe. The remaining of this section is structured as follows:
Section explains how we created our interview questionnaire, Section [3.2]
how we selected the interview participants, and Section how the interviews
were conducted, processed, and coded.

3.1 Interview questionnaire

All co-authors of this paper jointly created an interview questionnaire aiming
to capture all the aspects we wanted to cover to reach research goals G; and
G>. To validate the questionnaire, dry-runs were carried out with three distinct
developers with experience in CI/CD. The results of the interviews with these
developers were not included in our analysis, as they only served to further
improve the questionnaire.

8 Pooya Rostami Mazrae et al.

The final questionnaire is presented in Appendix [A] It included about 30
questions, some being conditional to the answers to previous questions. These
questions were structured along the following main themes:

1. General questions about the respondent

2. General questions about CI/CI usage

3. Questions about specific CI/CD tool usage
4. Questions about CI/CD migration

5. Questions about CI/CD tool co-usage

6. An open-ended closing question

T

he responses for themes 2 and 3 were used as a basis for research goal G;
(see Section []), while themes 4 and 5 served as a basis for research goal G
(see Section [5)).

3.2 Selection of respondents

We targeted interview candidates with experience in software development
in open source as well as in commercial settings. Our main strategy to find
interview candidates was through the Twitter and LinkedIn channels of the
authors, through e-mails and direct messages to practitioners, and through
referrals by colleagues as well as by some interviewees. To increase diversity of
interviewees and not being restricted by geographical constraints, we decided
to conduct our in-depth interviews online using video conferencing tools.

In order to be able to participate in the study, candidates needed to meet
at least two out of three inclusion criteria that we have defined beforehand:
(1) having actively contributed to, or having been responsible for a software
project relying on CI; (2) having sufficient knowledge about the reasoning and
decision-making process about which CI tool is used in that software project
and how; (3) having been involved in setting up or maintaining the CI process
of the project.

We stopped selecting and interviewing candidates when we reached a point
of saturation [31}/32] where no new themes or codes emerged from the addi-
tional data collected. We observed such saturation after the 20*" respondent
when, except for the answers to the open-ended closing question and the spe-
cific work context of the respondents, little additional relevant information
was gathered on top of what previous respondents had already provided. We
therefore stopped the interview process after the 22nd interview. While only
22 interviews might seem little, it is more than what has been used in some
previous qualitative studies in empirical software engineering [33] |34] |35] that
reported saturation after 16, 16 and 10 interviews, respectively. Nevertheless,
we acknowledge that our inclusion criteria for selecting interview candidates
were such that we only considered experienced developers with practical ex-
pertise in CI usage. As a result, the opinions and findings reported in the paper
do not necessarily generalise to more inexperienced developers.

Table [I] summarises the demographics of the respondents. In the remain-
der of this article, the respondents are identified by a unique number R,, or

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 9

Table 1 Characteristics and demographics of respondents.

years of

experience
ID dev. CI industry open source continent
Ry 7 - v v Europe
Ro 11 - v Europe
R3 6 - v Europe
Ry 19 - v v North America
Rs 22 14 v v Europe
Rg 19 - v North America
R7 8 - v Europe
Rsg 11 8 v v Europe
Ro 6 4.5 v Europe
Rio 20 10 v v North America
R 5 4 v v Europe
Ri2 8 6 v v Europe
Ris 15 - v Europe
Ri4 4.5 3 v v Asia,
Ris 10 3 v Europe
Ris 12 2 v Asia
Ri7 15 - v Europe
Ris 10 - v v Europe
Rig 24 - v v Europe
Rog 15 4 v v Europe
Ra21 12 8 v North America
Roo 20 12 v v Europe

simply n when it is clear from the context. The second and third columns of
the table report on the number of years of development and CI experience
of each respondent. On average, the respondents can be considered as very
experienced software developers, with an average of 12 years and 4 months
of software development experience and 4.5 years of CI experience. Not all
respondents dissociated their years of CI experience from their years of de-
velopment experience, explaining the absence of the second number for some
respondents.

Columns 4 and 5 of the table reveal that respondents were involved in a
wide range of software development projects, including personal, open source
software (OSS) projects and commercial projects. Most of the respondents (12
out of 22 respondents) had both industrial and open source software experi-
ence, while seven respondents had only been involved in commercial software,
and three of them were only in OSS. Furthermore, some of the respondents
were or had been working on big open source projects like curl and Conda-
forge, or for big tech companies such as LinkedIn and Microsoft. The last
column reveals that most of the respondents lived and worked in Europe (16
respondents spread over 7 different Western European countries), while 4 re-
spondents came from North America and 2 from Asia.

10 Pooya Rostami Mazrae et al.

. Finding
interviewee

Video call

v
Audio
transcription

v

Interview
anonymisation

v

Verify
anonymisation

< Discussion

A7
Inductive
deductive coding |

v

Verify coding

Create final
codebook

Fig. 1 Schema of the interview process.

3.3 Conducting and processing the interviews

The process we followed for conducting and processing each interview is sum-
marised in Figure [I] Prior to each interview, the selected interview candidate
was required to sign a consent form in order to meet the GDPR regulations
and to allow us to use the interview results for research purposes. After hav-
ing received the consent form, a virtual meeting was fixed to carry out the
online interview through a video-conferencing tool the candidate was comfort-
able with. One author conducted the interview and made an audio recording,
with the explicit permission of the candidate. Each of the 22 interviews lasted
roughly about 30 to 45 minutes, and the total set of interviews was spread
over a four-month period, from November 2021 to February 2022.

The author that conducted the interview resorted to an automatic tran-
scription tool to transcribe each interview. The resulting verbatim textual
transcripts were cleaned and anonymised to hide privacy-sensitive informa-
tion such as names of persons, companies, or specific software projects. This
process was made by one author, and was checked and further improved by a
second one. A third author was involved in case of doubt.

To structure the information gained from the interview transcripts we fol-
lowed a process similar to Foundjem et al. [33], using a combination of inductive

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 11

and deductive coding [36]. In the first phase of inductive coding, the first au-
thor assigned labels to the transcribed text, without any predetermined theory,
structure, or hypothesis. After that, one author followed a top-down deduc-
tive coding process to create separate codebooks for each interview, deriving
codes based on the research questions and concepts under study, and using
these codes to group and structure the inductive labels that were attached
to the transcribed text during the inductive coding phase. A second author
verified each of these codebooks and, in case of disagreement, a third author
was involved in the discussion until we reach a consensus on the coding.

All anonymised transcripts except two have been made available as sup-
plementary material to this paper. We did not receive authorisation from the
respondents of the two excluded transcripts to make this information public,
although we were authorised to use and process the information from those
transcripts in the context of this paper.

4 Goal G1: Why, how and which CI tools are being used?

This section addresses our first research goal, aiming to understand the ratio-
nale behind how and why developers rely on specific CI tools, and how this
reported usage has changed in comparison with the existing body of research
presented in Section [2| We will do so by providing answers to the following
research questions:

R@1.1 Which CI tools are being used?

RQ@Q1.2 What are the main reported reasons for using CI?
RQ@Q1.3 Which activities are being automated by CI tools?
RQ1.4 What are the most valuable features of these CI tools?
RQ@1.5 What are the reported shortcomings of these CI tools?

These research questions will be addressed in the next five subsections.

R@Q1.1 Which CI tools are being used?

This preliminary research question aims to reveal the diversity of CI tools being
used by respondents, and to determine which CI tools have been used more
frequently by respondents. Overall, 31 different CI tools have been reported
by respondents. The full list of reported CI tools can be found in Appendix [B]
Throughout the article we use respondent IDs whenever we cite relevant quotes
from them. In order to put these quotes in the right perspective, Appendix [B]
also provides a mapping between these IDs and the CI tools they reported
having used.

Table 4] lists the 14 CI tools that were used by at least two different re-
spondents at some point in time, ordered in decreasing frequency of usage. One
can observe the use of a large variety of Cls, some of them being self-hosted
(e.g., Hudson, Jenkins), others being offered as a cloud service (e.g., GHA,

12 Pooya Rostami Mazrae et al.

Table 2 CI tools having been or being used by at least 2 respondents.

cloud self open release # of respondents

CI tool based hosted source date all-time currently
GHA v Nov 2019 18 18
Jenkins v v Feb 2011 16 9
Travis v Nov 2011 15 1
GitLab CI/CD v v v Nov 2012 14 12
CircleCI v v Sep 2011 12 8
Azure DevOps v v Oct 2018 11 9
AppVeyor v Nov 2011 5 3
Hudson v T Feb 2005 5 0
TeamCity v v Oct 2016 3 3
Cruise Control v T Mar 2001 2 0
Drone v v v 2014 2 2
Bitbucket

Pipelines v May 2016 2 2
Netlify v v v Apr 2015 2 2
Bamboo v Feb 2007 2 1

T Cruise Control was not open source when it was being commercialised by Thought Works.
The tool became open source after the company stopped maintaining it.

Hudson was originally released as open source by Sun, but was commercialised when
Oracle acquired Sun.

Travis, Bitbucket Pipelines) or both (e.g., GitLab CI/CD). In addition to the
14 CI tools listed in Table [4, another 14 CI tools were reported only once.
These were, in alphabetical order: AWS CI/CD, Buildbot, BuildKite, Cirrus
CI, Codefresh, Concourse, Heroku, Jacamar CI, Percy, Pulumi, Sauce Labs,
Tekton, Vercel, and Zuul. Three respondents additionally reported resorting
to custom-built in-house CI solutions, since no existing CI tool satisfied all of
their needs. These solutions will not be considered in this paper.

Table {4 also summarises which of the reported CI tools are still being
used currently by the respondents. In the light of the second research goal,
we observe that GHA is the most frequently reported CI tool one by far,
with the large majority of respondents (18 out of 22) using it currently. The
opposite can be observed for Travis: nearly all respondents that were using it
at some point in time are no longer using it, despite Travis being still actively
maintained. For instance, only 1 of the 15 respondents having used Travis is
still using it these days. This corroborates the results of Golzadeh et al. [11]
on the popularity of GHA at the expense of Travis.

Jenkins falls in between GHA and Travis. It used to be a popular self-hosted
CI since the majority of respondents (16 out of 22) reported having used this
CI at some point during their software development experience. Yet, only 9
out of them are still using Jenkins. The reasons why such changes occurred
will be explored later in this article.

GitLab CI/CD, CircleCI and Azure DevOps are three other popular CI
tools, having been used by at least half of the respondents, and still be used
by most of them. On the other hand, none of the respondents are currently
using Hudson nor Cruise Control, two of the earliest commercial self-hosted CI

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 13

tools. The reason is that both Hudson and Cruise Control were discontinued
by their respective companies and replaced by a new CI tool. For instance,
Thoughtworks, the company owning Cruise Control, replaced it with a new
commercial CI tool named Cruise in 2010. Since Cruise was not based on Cruise
Control, the company decided to make the source code of Cruise Control pub-
licly available after discontinuing its support. A few years later, Thoughtworks
rebranded and renamed Cruise as GoCD, which was ultimately released as an
open source CI tool in 2014. Hudson, the open source Java-based CI tool, used
to belong to Sun Microsystems, until Oracle decided to acquire this company
and to commercialise Hudson. The open source community reacted by cre-
ating Jenkins, an open source fork that became much more popular than its
ancestor. Jenkins continued to grow and to increase its functionalities, while
Hudson stagnated and ultimately became discontinued in February 2017.

31 distinct CI tools have been reported by the respondents, of which 14
are used by at least 2 respondents. Some CI tools, such as GHA, Jenkins,
Travis, GitLab CI/CD, CircleCI and Azure DevOps were used by at least
half of the respondents at some point in time. Only GHA and GitLab
CI/CD are currently in this situation. While Travis and Jenkins were among
the most used CI tools, most respondents have stopped using Travis and,
to a lower extent, Jenkins.

RQ@Q1.2 What are the main reported reasons for using CI?

This research question aims to identify the reasons behind adopting CI in
software development projects. Based on a survey with several hundreds of
developers, combined with interviews with 16 developers from 14 different
companies, Hilton et al. [5l[37] studied, among other aspects, the developer’s
motivations and benefits of using Cls. They reported that developers use CI
for 8 different reasons: to help catch bugs earlier; to avoid breaking builds; to
provide a common build environment; to deploy more often; to allow faster
iterations; to make integration easier; to enforce a specific workflow; and to
allow testing across multiple platforms. Many other qualitative studies have re-
ported similar reasons for using CIs [1,4114115//38-40]. The SLR [10] mentioned
the following reasons: improved software quality, stability, predictability, and
transparency; faster build, integration, and release cycles; improved productiv-
ity, efficiency, and developer confidence; reduced workload; and faster detection
and resolution of defects. Our interview results align with these reasons since
respondents reported adopting CI to achieve the following goals:

— increased reliability: “the intent was to ensure that we had reliable outputs.
Whenever there’s a code change, we would know that it’s working.” [Ri7]
and “Basically there were plenty of people contributing, so [for] each pull
request [we] needed to make sure that this pull request was not breaking the
code and that the code was reaching production.” [Ri1]

14 Pooya Rostami Mazrae et al.

— increased quality (e.g., through better reproducibility of bugs, increased
testing, and performing quality checks): “The reason was quality, we wanted
to use CI/CD to run tests all the time and to deploy automatically to pack-
age automatically the software without depending on one person to do it.
So the goal was really to have a common view on the build process of the
tools and to improve the quality.” [Ri3)

— increased productivity: “We very much invested into it that, if people want
to contribute, they can really focus on the actual contribution, and there
is very little overhead for them or fellow maintainers to do. We try to
automate as much as possible.” [Ryg]

— faster delivery: “The idea was to deliver value to the company in a quick
time.” [RH]

— reduced cost and effort: “The human costs have been reduced over time
because of all the automation that arrived in those tools.” [Ris] and “[..]
checked by the linting and [...] the maintainer does not need to do that extra
work.” [Ry3)

— rapid feedback: “[...] being able to have a quick feedback, it’s also why we
work in parallel. We work to reduce the time of the pipeline so we can get
early feedback for the people that contribute changes.” [Ris]

— increased transparency of the build process: “When we publish a release,
people can check from which CI tool it is coming. They can see the logs of
the build. They can see that the build has not been tampered.” [Ri3]

While earlier research [37] revealed that developers consider security as a
barrier for using CI, many of the respondents we interviewed actually men-
tioned increasing security by reducing security vulnerabilities as an important
goal for CI automation in their projects. For example, R; mentioned that
“on a more recent project we start to use Snyk, which is a tool for detecting
vulnerabilities”. Ry referred to the importance of DevSecOps which is an ap-
proach to automation and platform design that integrates security as a shared
responsibility throughout the entire development lifecycle: “something that’s
taking off right now is the addition of security in DevOps. It’s something called
DevSecOps where in the DevOps pipeline we had static code analysis, or even
dynamic code analysis and that’s one thing that is moving into DevOps area,
which is how to integrate security operations and development.” Ry4 and Rjs
highlight the importance of security testing/scanning: “in my current organi-
zation we have automated security tests in our repo so when we want to deploy
something in the production [...] we configured that thing to automatically test
our application security and give us a report of what we need to fix and if the
security tool fails” [Ri4], and “We also have some scanning tools which we
facilitate as a security scan to check the vulnerabilities or such things” [Ris).

Ry additionally reported that using a CI enabled their open source project
to retain contributors and attract new ones since CI usage allows to reduce
the maintenance overhead: “We invested a lot of thought and time into how
to attract and retain contributors. [...] we thought about how we can lower the
barrier to contribute, but also remove as much overhead as possible based on the

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 15

assumptions that as an open source project you really have to be fun, otherwise
people will move on to other projects.” It is interesting to note that this positive
impact of CI usage on contributor attraction and retention was not confirmed
in an empirical study by Gupta et al. [26] on 217 GitHub repositories using
Travis. Surprisingly, they statistically observed that developer attraction and
retention of a project were higher in the year before adopting Travis than in the
year following Travis adoption. More research would be needed to ascertain
the relationship between CI usage and contributor attraction and retention.

Rg reported the cloud-based nature as a reason for using Travis: it allowed
the team to reduce cost and hardware resources, since they were able to use
the CI tools “as a service” compared to many other competing CI tools at
that time that mostly required self-hosting.

The main reported reasons for CI adoption are to increase reliability, pro-
ductivity and security, to improve speed of delivery, and to reduce cost and
human effort.

The reasons reported by interview respondents are in line with earlier find-
ings in the scientific literature. For instance, they were reported in the SLR
by Soares et al. [10] and Elazhary et al. [16]. Savor et al. [8] also reported
that CI tools allow software development companies to increase their team
size by a factor of 20 and their code base by a factor of 50 without decreasing
developer productivity or software quality. These findings are confirmed by
our respondents who argued that CI usage increases reliability, quality, and
productivity. On the other side of the coin, interview respondents highlighted
that adopting CI tools introduces an additional layer of complexity into the
development environment which needs to be carefully considered.

RQ@Q1.3 Which activities are being automated by CI tools?

RQ 5 revealed that CI automation is used for different reasons. As a conse-
quence, one may expect that CI tools are used for a variety of activities, such
as building or testing code, managing dependencies, etc. Vassallo et al. [41]
even suggested continuous refactoring as an additional activity to automate
by CI tools to control the complexity of software changes.

Table [3] reports on the activities that respondents reported for automation
as part of their CI tool usage, distinguishing between the activities that were
initially automated as part of the CI process, and the ones that were automated
later on. As can be seen from the second column of Table[3] build automation is
unsurprisingly the most popular activity (mentioned by 9 respondents) that is
initially part of a CI process. An equally popular activity (also mentioned by 9
respondents) is unit testing. Respondents also mentioned other testing-related
activities during the initial phase of CI usage, namely code coverage analysis
(4 respondents), integration testing (3 respondents), and end-to-end testing (2
respondents). As an example of how respondents use CI tools for testing, Ry

16 Pooya Rostami Mazrae et al.

mentions: “we merged 600 pull requests from 170 people and I'm not going
to run the tests manually, there’s no way to scale a project like that unless
you have automation behind the testing”. Another 3 respondents report auto-
mated code quality analysis as one of their initial reasons for using CI tools.
For instance, “I use a lot of other stuff like linting, automated code formatting,
coverage” [Ryp]. Other reasons for initially using CI tools were generating doc-
umentation, server provisioning, checking browser compatibility, and creating
multiple builds (e.g., “we are also using an environment variable on GitLab
CI to use different configs for each project” [Rig]). Furthermore, Ry reports
using CI tools to make sure open source contributions are not breaking any
previous functionality in the program. This respondent emphasises that “it is
especially important to do that for cross-platform programs, because developers
usually only work on one system.”

Column three of Table [3| reports on those activities that had been added
later on to the CI automation process. The most popular of those activities
was security analysis, being reported by 8 respondents. The packaging and
deployment phases of the CI/CD process also tend to be added in a later
phase (7 respondents). The same holds for code quality analysis, mentioned by
7 respondents as being added later on to the CI automation (as opposed to 3
respondents that started automating it in the initial phase of using a CI tool).
More advanced testing activities (beyond unit testing) were also reported more
frequently to be added later on.

Other activities that were reported to be added later on to the CI au-
tomation were checking non-code artifacts (7 respondents), dependency man-
agement (5 respondents), license verification (3 respondents), and integration
with communication channels (2 respondents). For instance, Rig integrated
the CI tool with a Slack communication channel: “I also integrated our CI/CD
with Slack. After the build is successful and the APK is generated successfully,
we upload the APK to different channel of Slack for our customer or testers”.
Ry uses this integration to learn about forced pushes: “We have one that
notifies our Slack channel when someone forced pushes”.

Related to checking non-code artifacts, R13 reports checking the format of
commits to be the same as the expected commit format. Rys, Rog, and Rao
reported using linting tools for checking non-code related artifacts. Addition-
ally, Rig reported, “doing style checks, formatting checks of the files, and also
typing checks”. Rig indicated “in addition to these CI services that run our
particular jobs, there’s also these services that do, for example, code analysis
that may be not exactly CI services, but they are services that run and do
things on the code based on commits. Maybe they would qualify as CI services.
[-..] That’s sort of a popular thing these days, for example, to do a static code
analyzer service”.

The following activities were mentioned by only one respondent to be added
later on to software automation:

— software verification: “as a team grows to 10, 15, 20, 40 people, now, it
becomes a place to introduce constraints and system checks and verifications

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 17

Table 3 Activities being automated by CI tools

activity initially added later

build automation 91213141516 171819 -

unit testing 1234567919 13

integration testing 168 51118 19
end-to-end testing 36 18

code coverage analysis 14510 17 19

code quality analysis 710 13 261517 19 21 22
security analysis - 12413141517 22
packaging and deployment (CD) — 691113141821
checking non-code artifacts - 13 16 18 19 20 21 22
dependency management - 8 13 19 21 22
integrating with comm. channels — 16 21

license verification = 17 21 22

other 121620 621

that go beyond what you could do from tribal knowledge. So now it almost
becomes a system where you take the guidelines that you would write down
in a document and you put them into automation.” [Rg],

— labelling/closing pull requests: “We have a GitHub action that labels pull
requests with the appropriate labels” [Ra1] and “Someone just added one in
the last week that closes stale pull requests” [Ra1],

— detecting inactive contributors: “So I wrote a couple of scripts that are run
via GitHub action. [...] It finds anybody who hasn’t landed or reviewed a
commit in the last 18 months and flag them as a collaborator that should
probably be removed and opens a pull request to remove them.” [Rai].

CI tools are initially used for basic CI/CD tasks like build automation, au-
tomated unit testing and code coverage analysis. More advanced activities
are added later on to the CI automation, such as more advanced testing ac-
tivities, security analysis, code quality analysis, dependency management,
packaging, and deployment.

These insights align with the findings in the research literature. For exam-
ple, Soares et al. [10] report that CI automates boring repetitive tasks such
as basic automated building, testing and deployment. Our findings also con-
firm the initial reasons for CI usage reported by Savor et al. [§] who studied
the usage of CI tools in two different companies, as well as the initial reasons
reported by Elazhary et al. |16] who studied the use of CI tools in three differ-
ent organisations. In addition, they report that more complicated automation
tasks tend to be added later on, such as testing in a clone of the production en-
vironment. Specifically in the context of GHA, [12] and [30] report that many
of the reusable Actions support the basic CI activities of building, testing and
deploying.

18 Pooya Rostami Mazrae et al.

Table 4 Most valuable features of CI tools as reported by respondents.

&8 o s
ot
< = | E 3 51928 &
valuable features as % 4 =) < s |5 £ >
= Qo & - [
) & o) © A A d
) &] (@) T|o| &
S Bl <
< &}
125
good integration 6910 10 13 12 14 123
with hosting platform 13141 g 99 1517| 2L | 13
16 17 18 13 16
19 21 22
1210
ease of use 11 16 17| 8 22 81 222 1471 ig 16 22| 13 |9 22|15|1
21 22
support for specific 914 14 16 18 | 912 9 12 13 9 913
architectures/OS 19 22 21 19 19 22 18 19
2810
9 10 16 1811
popularity / familiarity 11 12 13 14 15
18 22 19 21 22 16 17 18
259 589 35
good free tier 10 13 14| 1316 9 11
17 21 22| 21 22
d oluei " 611 13 8 213 (1415
good plugin support | %) oo 14 17 17
self-hosting ability 6 16 21 2414 9 [22|1
useful features 59 11 915 | 13
. o 511
customizability 19 29 14 17
security 18 8 18
speed 511 22 13

RQ1.4 What are the most valuable features of CI tools?

Research goal Gy of this article aims to understand why project maintainers
rely on specific CI tools. In other words, we are interested in knowing the most
valuable features offered by the CI tools that have been used by respondents,
as these features are likely to play an important role in why these CI tools
have been used in their projects. We therefore asked each respondent what
were the most valuable features of the CI tools they had used.

Table [4] already revealed a difference between self-hosted and cloud-based
CI tools, and between open source and commercial solutions. These differences
may have played a role in the choice of CI tools by some developers.

Table [4] summarises the most valuable features of each CI tool, as reported
by the respondents that use them. Only tools for which at least two valuable
features had been reported are listed. It is worth noting that these features
have to be interpreted in their historical context: they do not necessarily reflect
what are the current valuable features offered by a CI tool, but they reflect
what were these features when the respondents used the CI tool. Due to the
qualitative nature of our analysis, the table is inevitably incomplete, since the

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 19

absence of a respondent mentioning a valuable feature does not imply that
the feature is absent from the CI tool. As a consequence of this, the valuable
features of less popular CI tools are less likely to be mentioned, simply because
there were fewer respondents to report about them. Below we report on the
valuable features listed in Table Fl

Good integration with hosting platform. Many projects use a CI tool on top
of a hosting platform (such as GitHub, GitLab, BitBucket or Azure) that is
used to store and manage the project development history. In those cases, it
is important for the CI tool to be well integrated into the hosting platform in
order to make it as easy as possible to configure and use the CI tool. Table [4]
shows that respondents appreciated the good integration of GitLab CI/CD
into GitLab, the good integration of Travis and GHA into GitHub, and the
good integration of Azure DevOps into Azure.

Ease of use. A good user experience makes the use of CI tools easier, smoother
and more enjoyable. As such, it was considered by many respondents as one of
the most valuable features of the CI tool they were using. They mentioned a
variety of factors that affected the ease of use of CI tools. One such factor was
the simplicity of the user interface. In addition, the presence of good documen-
tation was also important, since it helps developers find and use the available
features to their full potential. Yet another one was the ease of configuring the
CI tool or the workflows or pipelines created with it, for example by providing
the ability to use default settings for configurations. The variety, clarity, and
above all, the stability of the available configuration options also affected the
ease of use.

Support for specific architectures and/or operating systems. CI tools enable
building and deploying software in specific environments, and facilitate the
deployment on multiple environments. These environments typically include a
particular operating system (e.g., Ubuntu or some other Linux variant, macOS,
Windows, Solaris, FreeBSD) and a specific hardware architecture or processor
(e.g., Intel or ARM CPUs, and AMD GPUs). Since the required environments
may strongly vary from one project to another, and since not every CI tool
supports all possible environments, this may affect the choice of a CI tool.
For example, the ability to support Windows builds was the main reason for
four respondents to use AppVeyor at the time when most of the other CI
tools did not provide any (or any decent) Windows support. CircleCI was also
particularly appreciated by respondents for its support for a wide variety of
different build environments.

Popularity and familiarity. Several respondents reported using specific CI tools
in their project out of familiarity. Often, developers just continue to use tools
that have already been in place in the project based on some earlier decisions
by former project maintainers. A related frequent reason to prefer some CI
tool over another one is because of its popularity. If some tool is more popular
than another one, it becomes more likely that it will be found or recommended
by someone. Popularity was one of the main reasons raised by respondents to
choose Travis or Jenkins. Until GHA entered the landscape, Travis remained

20 Pooya Rostami Mazrae et al.

the default choice for software projects hosted on GitHub, while Jenkins used
to be the default choice for Java projects.

Good free tier. Most CI tools are commercial, requiring their customers to pay
for the services they offer. On the other hand, many CI tools also provide
what is called a free tier or free plan of their cloud-based service. This allows
projects (mostly open source projects) to use the cloud resources to run the
CI for free. Depending on the CI tool, the free tier may impose limitations
on the number of supported users/projects, the number of minutes to execute
builds, the number of monthly builds, the computing resources, type of OS,
and/or the number of jobs that can be executed in parallel. Sometimes, the free
tier also restricts the available functionalities of the CI. Table [shows that
respondents particularly appreciated the free tier offered by Travis, GitLab
CI/CD and GHA. As will be discussed later, the restrictions imposed on the
free tier may change over time and cause projects to migrate to other CI (cf.

RQ2.2).

Good plugin support. Many respondents found it valuable that several CI tools
come with the possibility to create and use reusable components for creating
CI workflows or pipelines. For example, GHA distributes a large set of Actions
on the GitHub Marketplace, CircleCI comes with a public registry of reusable
Orbs, and Jenkins provides a large index of community contributed plugins.
The amount, quality and availability of these reusable components determine
to which extent a CI tool can be considered to feature good plugin support.

Self-hosting ability. As can be seen from Table [4] some CI tools can be self-
hosted and be used “on premises” without needing to resort to any cloud-based
service. Some companies prefer to use a self-hosted CI solution because it offers
increased security, since it reduces the risk of company-sensitive information
getting exposed or even compromised through cloud-based solutions: “You can
run self-hosted runners, which is a way for you to run on your own machines,
but then you need to implement a whole ecosystem of security constraints be-
cause you can potentially be running arbitrary third-party code in your data
center, so you need to make sure that you’ll lock down that environment to
make sure that the environment itself is actually secure. That’s a significant
investment.”

Useful features. Many respondents reported useful features related to their
CI tool of choice. For example, Rj reported being happy with GHA since
it included many useful features since its beginning, and more features are
added regularly to continue making it a better tool. Rg appreciated GHA’s
artifact upload support: “they give you like 5 gigabytes or something of storage.
And your CI run can upload some files. And as an administrator of that CI
pipeline, you can access that file and download it like a compilation output or
something.” For the same reason, Rg appreciated Azure DevOps. Ri5 liked
the access to deployment history in Azure DevOps: “you had a facility when
you wanted to go back in time and just deploy one release that you had, for
example, one year ago. You could go to the history and just click on the history
and redeploy that”. Rq1 appreciated Jenkins’ versatility: “it’s really powerful,

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 21

and you can do plenty of things.” Ri3 liked GitLab CI/CD’s ability for each
repository to have its own pipeline, combined with the concept of cross-project
CI with multi-project pipelines.

Customizability. Several respondents considered customizability as a valuable
feature, even if the interpretation of this concept varied a lot depending on the
considered CI tool and respondent. The customizability of GHA was mostly
referred to as the ability to use this tool for non-CI related stuff like updat-
ing the Slack channel based on the results of the runs. Respondent Ryo even
claimed that GHA had “more options of customization” in comparison with
other CI tools. Two respondents reflected on the customizability of Jenkins,
appreciating its ability to customize the user interface with different themes.

Speed. Fast building and running times were mostly valued for GHA (three
different respondents). Respondent Rp3 particularly valued the speed of Cir-
cleCI due to its facility for creating complex parallel pipelines. The ability to
run multiple pipelines in parallel can lead to significant speed improvements.

Security. Security aspects are of crucial importance for CI tools since the au-
tomation task they support has the potential of being used by a large number
of projects and developers worldwide. This huge attack surface might cause
security issues to escalate very quickly. As a valuable feature of GHA and
CircleCI, Ryg explained their ability to secure user credentials from being ac-
cessible by other developers: “In ClircleCI there is a way you can build the
artifacts to a staging area and then you can move the artifacts with the sec-
ond workflow to where you want to deliver it. That’s what we do with GitHub
Actions too. We build in one workflow and we have a second workflow which
does the upload, shipping or delivery with credentials.” The availability of a
public registry of third-party plugins for the CI tool also introduces an impor-
tant potential risk [30], since there is little control over the contents of these
plugins. For this reason, Rg valued the way Travis avoids this problem by
only providing closed-sourced plugins that are verified by the company itself,
therefore reducing the risk of introducing malicious code.

In the following, we present this set of valuable features from the point of
view of specific CI tools. Such information will be useful in the context of later
question RQ)2; to understand why developers decide to use multiple CI tools
simultaneously (e.g., because they have complementary valuable features) and
R@s.2 to understand why developers decide to migrate to a different CI tool
(e.g., to benefit from valuable features of this CI tool).

GHA. The most recent CI in the list seems to have attracted a lot of atten-
tion from respondents for multiple reasons. Since it was developed by GitHub
itself, it naturally has very good integration into GitHub. The popularity of
the GitHub platform itself among open source developers was reported as a
determining factor of choice by 5 respondents. Respondent Rg decided to se-
lect GHA out of familiarity: “we made the decision at the time that we better
move to GitHub instead of Azure DevOps because of the developer familiarity
with GitHub over Azure DevOps as a system. So the trade-off there was devel-

22 Pooya Rostami Mazrae et al.

oper familiarity.” Moreover, GHA offers free runners, supports a wide range of
operating systems (including Linux, Windows, and macOS), and was praised
for its ease of use (“GitHub Actions are so easy to use for CI” [Rai]), its
good plugin support through a wide range of actions available on the GitHub
MarketPlace, its support for many different languages (including JavaScript,
Ruby, and Python), its reliable runners providing fast builds, its support for
self-hosted runners, as well as its security mechanisms to avoid exposing user
credentials.

Travis. Respondents appreciated Travis’ good documentation and the avail-
ability of many built-in features. Many respondents appreciated its good inte-
gration into GitHub. Indeed, given that its integration with GitHub used to
be better than the other available alternatives, Travis used to be the default
choice for GitHub repositories at the time. Nowadays, GHA has outperformed
Travis in terms of integration with GitHub. Many respondents also praised its
good free tier support at the time they were using it (often many years ago).
Rg reported a clear and simple interface, easy configuration, and good default
setting for Ruby projects. Rao agreed that “/Travis | was extremely easy to set
up with one single configuration file at the root of the project”.

Jenkins. Some of the valuable features of Jenkins that were praised by respon-
dents were its ease of use, its customizability, the availability of many plugins,
and it brings a good user experience, even for non-technical users. It also of-
fers self-hosting ability, which is attractive to companies that want to exert
full control over the CI automation, notably in order to comply with their
service-level agreements related to downtime, service provider response time,
security, and turnaround time.

Azure DevOps. This CI tool was mostly reported by respondents working in
companies that had a contract with Microsoft for their infrastructure. The
valuable features of Azure DevOps were its integration with other Azure tools
(4 respondents), good standard built-in features, good support for plug-ins, a
better integration with GitHub compared to CircleCI, good runners for Win-
dows and macOS, easy step-by-step configuration, a history of work items and
deploymentsﬂ ease of defining multiple build environments, and good sepa-
ration between CI and CD configuration. With respect to the latter feature,
Ryg specifically appreciated Azure DevOps’ “Release pipelines”ﬂ as a way to
facilitate the deployment automation.

GitLab CI/CD. Unsurprisingly, GitLab CI/CD was only mentioned by devel-
opers using the GitLab social coding platform. Respondents appreciated its
good free runners, a secure debug process, its ease of use in comparison with
Jenkins for using private resources, its support for Docker containers. They also

1 See https://docs.microsoft.com/en-us/azure/devops/boards/queries/history-
and-auditing and https://learn.microsoft.com/en-us/azure/azure-resource-
manager/templates/deployment-history

2 https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=
azure-devops

https://docs.microsoft.com/en-us/azure/devops/boards/queries/history-and-auditing
https://docs.microsoft.com/en-us/azure/devops/boards/queries/history-and-auditing
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 23

appreciated its self-hosting ability which distinguishes GitLab CI/CD from its
competitor GHA.

CircleCI. Respondents specifically appreciated CircleCI's support for Win-
dows, macOS, ARM, and Docker containers. They also valued its user interface
with good visualisations, its nice feedback loop with GitHub, its speed, its fa-
cility for creating complex parallel and conditional pipelines, and the concept
of workspaces/]

Drone. The reported valuable features for Drone were its support for ARM
architectures, its self-hosting ability and an intuitive interface.

Hudson. Rao reported having used Hudson for a long time for closed source
projects and private repositories, and appreciated the CI’s self-hosting abil-
ity. Ri5 appreciated the easy setup and configuration because Hudson was
developed in Java and the team had experience working in Java environment.

TeamCity. Only one respondent reported on the valuable features of TeamC-
ity, valuing the user-friendliness of the tool, as well as its self-hosting capabil-
ities.

AppVeyor. This CI tool was reported by four different respondents as the CI
tool that historically used to have the best support for Windows. Since no
other valuable features were reported for AppVeyor, this seems to be the main
reason that caused developers to use it.

Other CI tools. Considering the CI tools being mentioned by single respondents
(and hence not shown in Table [}, Rs valued Concourse because of its good
visualisation and ability to set personal triggers for pipeline activation. The
ability to have completely independent pipelines in Concourse also enables to
connect multiple repositories or Docker images to one pipeline and use user-
defined or pre-defined triggers to start the pipeline. Percy was praised by Rg
as the only available CI tool with specific visual CI abilities: “It basically would
render your web page or you define a number of views that you want to test,
take a screenshot essentially and then in your branch that you’re working on it
would do the same and it would compare the screenshots between the branches
[-..]. If you’re assuming when you deploy or when you make a change, if you’ve
broken something, say in your CSS, then you could have some visual bugs that
wouldn’t show up in the automated testing. So this is a good way of catching
some of those more obscure CSS bugs”.

3 https://circleci.com/docs/2.0/workspaces

https://circleci.com/docs/2.0/workspaces

24 Pooya Rostami Mazrae et al.

The CI tools that were most popular among respondents came with the
biggest set of valuable features (such as ease of use and support for a
wide range of hardware architectures and operating systems). With the
exception of Jenkins, the most valued CI tools are cloud-based solutions
(GHA, Travis, Azure DevOps and GitLab CI/CD) that come with a good
integration with their hosting platform and a good free tier. These solutions
also feature a good support for reusable plugins, with the exception of
GitLab CI/CD that on the other hand offers a self-hosting ability.

Less popular tools were still considered valuable because they offered
specific features that were not available at the time in the other competing
CI tools, such as Windows build support, visual testing for UI design, or
support for multiple repositories in a single pipeline.

These results differ from earlier studies in that we provide a tool-specific
analysis. We also observe a clear shift of the CI landscape towards more cloud-
based solutions, with a free tier offer for open source projects, tight integration
in the social coding platform, and a registry of reusable components to facili-
tate creating CI workflows.

RQ@Q1 5 What are the reported shortcomings of CI tools?

We asked respondents about the shortcomings they experienced in the CI tools
they had used. Table [5| reports on these shortcomings, grouped into various
categories that we described hereafter. Some reported shortcomings were con-
sidered so severe by the respondents that they caused the project to migrate
to a different CI tool. Those migration reasons will be discussed in more detail
in RQs.o. It is worth to mention that this list of shortcomings is inevitably in-
complete, since respondents may have forgotten to report some shortcomings
while focusing on the major ones they had experienced. Moreover, it may be
the case that some reported shortcomings are no longer relevant today, given
that CI tools continued to evolve and improve.

Hard to configure. Configuration difficulties were reported for several CI tools.
The initial build configuration was reported to be difficult to create in TeamC-
ity. GitLab CI/CD did not have a simple workflow. GHA was reported by two
respondents to be difficult to configure because too many options are available,
and because of the lack of an appropriate default initial configuration. Jenkins
was reported by five respondents as difficult to configure.

Too slow. Given that speed is considered as a valuable feature of CI tools (see
Table , it is not surprising that many respondents mentioned slow runners as
a shortcoming of some CI tools. This was the case for Hudson, GitLab CI/CD,
Travis and Jenkins. One respondent also mentioned that even GHA was too
slow for their specific needs, even though three other respondents explicitly
acknowledged the speed of GHA as a valuable feature.

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 25

Table 5 Shortcomings of CI tools as reported by respondents. (CI tools that were used by
only one respondent are not listed in the table.)

e)
" EREe)
2} a - @] 2 g
. < ; o @) o) Q _g
shortcomings T % -é S | A =
&} & 15} 2 S| o o
" = O | 5
h=1 N
Y <
611
hard to configure 815 12 17 8 1: TeamCity
21
518
too slow 10 19 22 16 22 22: Hudson
: 25
unsatisfactory
1
user experience 185 108 . = 2822 L
restrictions of 49
free tier 421 1011 22
security issues 6158 13 4: Bamboo
lack of scalability 18 112 413
plugin problems 8 8 12 15
no support for specific
architectures/OS 421 19
feature stagnation 413 & é?%fgg;’lgéone
lack of reliability 9412 gl
insufficient access :
T - 15 13: TeamCity
lack of GitHub
integration 9 19: Zuul

Unsatisfactory user experience. Different CI tools were reported to have an
unsatisfactory user experience for a wide variety of reasons. Jenkins was re-
ported to have an outdated user interface design. GitLab CI/CD was reported
to have a cluttered user interface and no web interface for defining work-
flows. For Travis, one respondent reported a bad user experience since most
configuration tasks for integrating the CI tool into GitHub needed to be done
manually. For Azure DevOps, one respondent regretted the absence of YAML-
based configurations of workflows. For GHA, two respondents mentioned a too
sparse user interface for workflow configuration and four respondents reported
no good visualisation of workflows. Additionally, one respondent mentioned
the difficulty to start using GHA due to insufficient documentation (especially
in the early days of GHA).

Restrictions of free tier. Respondents reported restrictions imposed by the
free tiers of CI tools on the build time, the amount of available memory, and
the number of runners that could be used in parallel. This was the case for
Percy, CircleCI (which did not support macOS under its free trier), GHA
and Travis. Travis in particular was agreed upon by many respondents to

26 Pooya Rostami Mazrae et al.

have imposed many restrictions on its free tier after the company’s decision
to change its policy towards support for open source projects. The reasons
for these imposed restrictions will be discussed in detail in Section In a
nutshell, Travis replaced its free tier for OSS project builds, that used to offer a
fixed number of minutes per month, with a higher fixed number of minutes for
life. At the same time, Travis restricted the set of projects that they qualify as
open source, as reported by Rig: “because how they defined open source, they
wouldn’t even define [OUR PROJECT] as an open source project [...] because
according to their requirements, if someone was paid to work on the project like
I am, it wouldn’t qualify for the open source tier at Travis.” Given that OSS
projects have a very limited budget, Ri9 saw no other choice but to migrate
to another CI tool.

Security issues. Several respondents mentioned security concerns related to CI
usage. They did so for Travis, GHA and Bamboo, but any other CI tool is
likely to suffer from security issues to some extent. Travis was reported by Ris
to lack correct communication about an important data breach “they had a
security breach [. ..] and they did not communicate properly about this”. GHA
was reported by three respondents to have security issues related to working
with credentials and self-hosted runners. Rg explains that “if somebody already
developed a [GHA] Action, you can just plug it into your project and that
works great for an open source project because the software is open sourced.
You’'re not worried of the vulnerability and GitHub takes on the responsibility
for all the security problems that you would kind of encounter if you tried
to run your own CI platform.” However, “you can’t do that in enterprise.
You basically don’t trust your software to run on anybody else’s machines,
or on virtual machines you don’t control.” In addition to this, the reliance
on reusable components (e.g., Actions) to automate development activities in
software projects increases their attack surface considerably.

Lack of scalability. Scalability refers to the ease of seamlessly and transpar-
ently increasing the capacity of CI tools to accommodate for bigger builds,
for example by offering longer build times, more parallel runners, and more
computing resources (processing power and memory) for the CI process. Scal-
ability issues were reported for three CI tools: Jenkins, GitLab CI/CD and
Travis that was reported by one respondent to have a memory bottleneck. Re-
spondent Rg acknowledged that scalability necessarily comes at a certain cost.
Moreover, it is more difficult to achieve in self-hosted solutions, compared to
cloud-based CI tools: “Often you evaluate for capability. Hey, is this system
going to be able to do what we need to do? You evaluate for its scalability,
meaning yes, it can run one build, but can it run 1000 builds per day? And
third is going to be cost, and that comes in two flavors. There’s the actual
out of pocket operational expenditure of running this system. And then there’s
the maintenance and continuous support for the system from the developer or
maintainer perspective. Usually one of those evaluation criteria is not met by
the target system for whatever reason. Most frequently it’s a scalability one.”
Respondent Rg reported another scalability issue related to data bandwidth

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 27

and the absence of automated caching of compiler outputs: “If you run CI a
lot of times, you download quite a lot of data from the Internet. Because you
have packages that you install during your CI run [...] and you basically use
up a lot of bandwidth and data. And, again, when you compile software, for
example C++ projects, it takes up a lot of time because it’s a computationally
intensive process.”

Plugin problems. Problems with plugins were reported for multiple CI tools
for different reasons. Jenkins was reported to be too barebone, requiring the
user to need many plugins from the start. For Travis, plugins are only updated
by the company itself, providing limited freedom to the user. Azure DevOps
was reported not to have the ability to write and customize plugins (as is
possible in GHA, for example). In case of GHA, Rg reported not being fond of
having community plugins and preferred those CI tools that only offer built-in
plugins: “Travis did provide [...] a good amount of things already installed on
the CI machine. So I didn’t need to use [...] all of the different plugins that
you can use. [...] Most of the GHA plugins are kind of community ran on
open source repositories. That makes me very nervous of using them.”

No support for specific architectures or operating systems. Ri1g regretted Travis’
lack of support for the FreeBSD OS and ARM hardware architectures. Ro;
regretted GHA’s lack of support for specific OS and hardware architectures,
and R, regretted the absence of support for HPC binaries. Several respon-
dents agreed that many CI tools have recently become better in supporting
the major operating systems (Linux, Windows, macOS). Still, most CI tools
remain limited when it comes to less common operating systems (e.g., Solaris
and FreeBSD) and hardware architectures (e.g., specific GPU processors). Mo-
roever, as pointed out by Rig, some projects require to build and deploy on
such a wide diversity of OS that no single CI tool is able to satisfy these needs:
“[name of project] is a portable project. It runs on so many architectures and
operating systems that we don’t have nearly that coverage in CI services”.

Feature stagnation. Four CI tools (Travis, Drone, AppVeyor, and Concourse)
were reported by respondents as suffering from a lack of new features being
introduced, causing projects to move away from them. For example, Ry5 re-
ported that: “one of the drawbacks of Concourse is that I don’t see a lot of
active development anymore on the tool itself. [...] It has been in development
for a number of years, but now in the past year, it also became stagnant.”

Lack of reliability. Travis was the only CI tool reported by many respondents
to have become less reliable for a variety of reasons. Two respondents reported
a decrease in service quality. Respondent Rg complained about the company
changing its way to support webhooks “They stopped all of their webhooks that
basically just stopped doing CI for almost all of my projects on any builds.”
R5 reported problems with the CI’s customer service, since they took a long
time to answer or not even answering about quality of service problems. Two
respondents complained about the flakiness of Travis. For example, R, stated
that he was “seeing a bunch of reliability problems in Travis where jobs would

28 Pooya Rostami Mazrae et al.

flake out and we would have to rerun them.” Two other respondents mentioned
unreliability of Travis without pinpointing specific reasons.

Insufficient access to logs. For TeamCity, respondent R13 regretted not having
access to build logs and build results: “we did not have access to the build logs
and the build results. It was quite painful to not have that feedback loop, but
still knowing it was running in the background.” For GHA, respondent Ri5
reported the absence of a deployment history as problematic: “GHA does not
support the history. In Azure DevOps I remembered we had the history. I mean
that you had a facility when you wanted to go back in time and just deploy one
release that you had.”[

Lack of GitHub integration. Rig reported a lack of integration with GitHub
for Zuul: “their integration with GitHub has some kind of flaw. In many cases
when we Tun CI jobs on Zuul they don’t show up like the other jobs do on
GitHub.” Azure DevOps was also reported by one of the respondents to lack
proper integration with GitHub.

Different CI tools suffer from different shortcomings, such as configuration
problems, slowness, unsatisfactory user experience, restrictions on its free
tier, security issues, insufficient scalability, plugin problems and many more.
Travis was considered to be the most problematic by respondents, mainly
suffering from lack of reliability, slowness, restrictions on its free tier, and
feature stagnation. GHA was also reported to exhibit several shortcomings,
mostly in relation to an unsatisfactory user experience and security issues,
as well as some missing desirable features. For Jenkins, the main reported
shortcoming was its configuration difficulties.

These findings are in line with those of earlier studies. Without focusing on
CI-tool-specific shortcomings, Hilton et al. [37] identified general shortcomings
of CI usage, such as configuration problems, slowness, security issues, and lack
of good integration. They identified some additional shortcomings that were
not reported by our respondents such as the difficulty of troubleshooting CI
build failures. On top of this, Elazhary et al. [16] identified some other short-
comings such as lack of features for Ul testing, bottlenecks for committing
due to PR reviews, and scalability issues due to resource restrictions. One of
the shortcomings that we did not observe in earlier studies were the plugin
problems mentioned by several respondents. Specifically for Travis, our find-
ings are in line with Widder et al. [27] who reported Travis being slow, having
unsatisfactory user experience, not supporting specific architecture or OS, and
feature stagnation. Our respondents reported all these shortcomings, as well
as several others. Specifically for GHA, Kinsman et al. [12] reported discus-
sions around problems and frustrations with broken builds, errors and other

4 Azure’s Deployment History feature enables to go back in time to allow to redeploy
a release that was for example available one year ago, just by selecting that deployment
in the history. See https://learn.microsoft.com/en-us/azure/azure-resource-manager/
templates/deployment-history?tabs=azure-portal.

https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history?tabs=azure-portal

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 29

problems. However, they did not discuss these shortcomings in depth, making
it difficult to compare them with our own findings.

5 Goal G2: Why and how are CI tools being co-used and what are
the reasons for migrating to other CI tools?

This section tackles research goal Ga, aiming to understand the reasons for
using different CI tools together, as well as the reasons and difficulties for mi-
grating to another CI tool. We will do so by providing answers to the following
research questions:

RQ>1 Why are multiple CI tools co-used simultaneously?
RQ2.2 Why do software projects migrate to a different CI tool?
RQs.3 What are the difficulties in carrying out a CI migration?

These research questions will be addressed in the next three subsections.

RQs.1 Why are multiple CI tools co-used simultaneously?

In their quantitative study of CI usage in 92K GitHub repositories, Golzadeh
et al. [11] found that co-using CI tools (i.e., making use of several CI tools
at the same time) is common practice. This is surprising since one might in-
tuitively expect all CI tools to provide similar services. We are not aware of
any published qualitative analysis aiming to understand the reasons behind
such co-usage. We therefore inquired the interview respondents about the rea-
sons behind this phenomenon. 13 out of 22 respondents confirmed that, in at
least one of the projects they were involved in, multiple CI tools were being
used simultaneously. In this section, we explore all CI co-usages that have
been mentioned by the respondents in order to understand the need for such
co-usage.

Figure [2] reports on the number of respondents making use of multiple
CI tools simultaneouslyﬂ We observe that the co-usage of CI tools is not re-
stricted to the most popular ones. The combination of (Travis, AppVeyor)
was reported 4 times, and the combinations of (CircleCI, AppVeyor), (GHA,
CircleCI), and (Azure DevOps, AppVeyor) were reported 3 times. These find-
ings corroborate the ones of Golzadeh et al. [11] that already observed that
Travis and AppVeyor was the most frequent case of co-usage, and that Travis,
AppVeyor, GHA and CircleCI were involved in most (92.1%) co-usages.

Focusing on the need for co-using CI tools, Table[6] summarises all reported
reasons for co-usage of CI tools. We observe that supporting multiple operating
systems is the most frequently mentioned reason for co-usage (5 respondents).
Most of the respondents mentioned the need to build software products at
least for Linux, macOS and Windows. Older versions of many CI tools had

5 Whenever 34 CI tools are used together, each pair of CI tools is reported individually.

30 Pooya Rostami Mazrae et al.

Travis -
AppVeyor

CircleCl 4
GHA- 1 3

Azure DevOps - -

GitLab CI/CD -

Jenkins -

Netlify -

Sauce Labs -

TeamCity -

Percy -

Drone CI -

Vercel -

Build Kite -

Zuul -

Cirrus -

w

o

1
0
0
0
0
0
1
0
0
1
}

1’{§~—ooooor—'ooor—-r—w—n
C-PrrProOrRrOOR R
-PFHOROORK
-mHOOHOOOOOR
% -ococooocoocoooo

7% -coomrRoOOO

« v
~ @ S
o

./QOO—oooooooooo
o)

2
%, %
%,
L,
@)
6 s
<

&
N
V/J’

G

%

S
8

Fig. 2 Number of respondents co-using a pair of CI tools

Table 6 CI tool co-usage reasons reported by respondents.

reason for CI co-usage respondent IDs

Supporting multiple operating systems 49131922
Complementary functionality 810 13
Having a backup CI tool 11819
Countering resource limitations 41921
Supporting specific hardware architectures 4 13
Testing a CI for potential migration 1

limited support for some of these OS. For many years, most CI tools have only
supported a single operating system (usually Linux, macOS or Windows), and
that is the reason why Rg reported to use AppVeyor for Windows builds,
and Travis for Linux and macOS. Nowadays, most CI tools support the three
main operating systems. As an example, GHA initially started with support
for Linux only, and added support for macOS and Windows later on. In the
case of Travis, support for macOS was added since April QOliﬂ and support for
Windows in October 201@ For GitLab CI/CD, Windows runners were added
in beta version in January 202@ and macOS support was added in August
20217

Additionally, some respondents required support for more specific oper-
ating systems. For instance, while Rj3 used CircleCI for Linux builds, this
respondent required BuildKite for FreeBSD builds. Two respondents also men-
tioned the need to support specific hardware architectures (e.g., specific CPU
or GPU processors) such as ARM64 and specific AMD or Intel processors. Rg
reported using Drone for ARM 64 CPUs, and lately also Azure DevOps to

6 https://saucelabs.com/blog/announcing-travis-ci-for-mac-and-ios-powered-
by-sauce-labs

7 https://blog.travis-ci.com/2018-10-11-windows-early-release
8 https://about.gitlab.com/blog/2020/01/21/windows-shared-runner-beta
9 https://about.gitlab.com/blog/2021/08/23/build-cloud-for-macos-beta

https://saucelabs.com/blog/announcing-travis-ci-for-mac-and-ios-powered-by-sauce-labs
https://saucelabs.com/blog/announcing-travis-ci-for-mac-and-ios-powered-by-sauce-labs
https://blog.travis-ci.com/2018-10-11-windows-early-release
https://about.gitlab.com/blog/2020/01/21/windows-shared-runner-beta
https://about.gitlab.com/blog/2021/08/23/build-cloud-for-macos-beta

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 31

leverage better support for these targeted platforms. R4, who is involved in
offering HPC as a service, has to use many CI tools simultaneously in order
to support the specific architectures required by their project: “ We need GPU
nodes. We need AMD GPUs which no cloud has. We need Intel GPUs which
no cloud has.”

The fact that CI tools tend to offer complementary functionalities is an-
other reason for co-using CI tools. This could be either because the CI tool
put in place does not offer some specific features required by the project, or
because these features cannot be used in the way the developers expect. As
an example, Rg reported using Percy in complement of Travis and CircleCI
because Percy is one of the few CI tools that provides support for visual test-
ing, a technique that helps developers to ensure that a graphical user interface
appears to the end-user as originally intended. Another example reported by
Ry and R13 concerns Netlify and Vercel, two CI tools that are designed specif-
ically for deployment of web applications. They notably facilitate the dynamic
scaling of the application based on the number of connected users, or based
on the number of database requests. Rjg relies on both Netlify and Vercel
in complement of GHA: “If this is some kind of website or web app then we
use Vercel or Netlify for the deployment aspect of it.” Ri3 also co-uses Netlify
alongside CircleCI and GHA for a better overall CI experience: “we are very
happy with the resources that we have in CircleCI [...], but we are also happy
with the integration that we have in GitHub, the caching that we can have in
GitHub Actions and we are also very happy with the specialised nodeJS features
that we get at Netlify”.

Another frequently reported reason for co-using CI tools is having a backup
CI tool in the case the main CI tool being used becomes out of order. Rig
indicated relying on a custom-built in-house CI tool “so we still have that too
as a sort of additional backup way of testing stuff”. Ryg reported they kept
using Travis alongside CircleCI and Jenkins as a backup for six months until
the project team decided that it was no longer needed.

Some respondents mentioned the need for more (free) resources as the
reason to co-use CI tools. For example, Ry “realised that co-usage can help
you to have more Tunners which lets you increase the amount of jobs you are
running”. Ry uses self-hosted CI tools side-by-side with cloud-based solutions
to counter the time limitations imposed by the free tiers of CI tools: “we attach
our own resources and we do it via GitLab CI/CD because the time limit is
greater than what GitHub Actions allows”. Similarly, Rig reported that “we
added more CI services, so we got more parallelism so that we would complete
all jobs sooner. That has been one of the primary reasons why we still use a
lot of them because it makes sure that we can run more jobs in parallel until
they complete”. Rqp co-used Sauce Labs in complement to GHA because at
that time GHA did not yet provide the ability to use the Windows VM during
development for free in open source projects. According to this respondent,
“lour project has to] work in all the browsers and [...] Sauce Labs gives free
stuff to open source projects [...] they let me run tests on Windows”

32 Pooya Rostami Mazrae et al.

- R18, R22

[Zuul J [AppVeyor J—RQ, R22:

R19

Travis
R4, R5, R8, R10, R11
R13, R20, R21, R22

R8, R13, R18 —_—
R9, R12_)
1.R12, R15,
Azure DevOps
| _R12 >
- CircleCl \—+—/ -
R12 A
) S—
Hudson > Jenkins —R2, R13 GitLab CI/CD
R15, R22
- J
Rs— R7
Concourse Cl BitBucket Pipelines & TeamCity R7
Deployments L

Fig. 3 Reported completed migrations between CI tools.

A last reported reason for co-usage is to test a CI for potential migration.
Ry reported introducing TeamCity in complement to GHA since “it would
allow us to migrate if necessary”.

It is quite common practice to use several CI tools in parallel. Most com-
binations involve Travis, AppVeyor, GHA or CircleCI. The most frequent
reasons are to cover more operating systems, to access complementary fea-
tures, and to benefit from more computing resources.

RQ@2.2 Why do software projects migrate to a different CI tool?

We observed in R@;.; that most respondents have used several CI tools
through time. We asked them explicitly whether they co-used these differ-
ent CI tools (see RQ2.1), and whether they migrated from one tool to another.
Since developers may decide to migrate to another CI tool for different reasons,
we also asked the respondents to share their experience on why they migrated.

Overall, respondents reported a total of 32 completed migrations in dif-
ferent projects (some respondents reported multiple migrations), involving 12
different CI tools. Figure [3| shows the migration paths. We observe that the
reported migrations originate from 7 distinct CI tools and lead to 9 distinct CI
tools. Most migrations originate from Travis (15 out of 32) and lead to GHA

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 33

(17 out of 32). The most frequently observed migration pattern is from Travis
to GHA (9 migrations), corroborating the findings of Golzadeh et al. [11].

Overall, we observe a general tendency to move from self-hosted CI tools
to cloud-based solutions since most of the completed migrations are to cloud-
based CIs (e.g. GHA) and at least half of migrations from Jenkins (a well
known self-hosted CI tool) are towards cloud-based CI tools (namely GHA,
Azure DevOps, and Bitbucket Pipelines). Free tier cloud services have the
advantage of not needing to configure and maintain a local CI server, which can
be quite costly for small teams and projects in terms of personnel and hardware
resources. Ry therefore prefers using the free tier of a cloud-based CI service,
rather than spending any budget on that resource: “since everything we’re
doing is open source and most of these CI providers have an offer for open
source projects to provide them with free hardware or CPU time we usually
don’t spend any money on hardware”. Moreover, cloud-based CI services are
usually more scalable and adaptable to the actual resource needs of the project,
as mentioned by Rs: “just to make sure, we run on cloud infrastructure, so if
we need to scale, we scale.”

We asked respondents to share the reasons why they migrated. Table [7]
shows the 10 reported reasons to migrate, as well as the source and target of
each migration. Some migrations are reported more than once since there were
multiple reasons that drove the decision to migrate.

The most frequent reason that was reported to migrate is to have less
restrictions on free tier, mentioned by 8 different respondents for 10 different
migration cases. All these cases correspond to migrations away from Travis. As
discussed in RQ 5, the change in Travis’ free tier imposes so many restrictions
on open source projects that it leads them to migrate to another CI. For
example Ri9 mentioned “I figured the project could use sponsored money or
donations to pay for it, but I felt it would be more responsible for our project
to not spend that money on Travis, but rather to save the money and just
move to another free service instead.” Half of the migrations away from Travis
lead to GHA (5 out of 10 cases), the remaining ones being to Azure DevOps,
CircleCI and Zuul. Another reason to migrate away from Travis is to “use a
more reliable CI tool”, reported by 7 respondents. This is a consequence of the
many reliability issues identified in RQ); 5 for Travis. This had led respondents
to migrate away to more reliable CI tools such as GHA (5 reported cases) and
CircleCI (2 reported cases).

The second most frequent reason to migrate to another CI tool is to obtain
a “better integration with hosting platform” (8 cases). This reason refers to
the integration of CI tools within the social coding platform used by the re-
spondent, typically GitHub, GitLab, Azure or BitBucket. The target of these
reported migrations is almost exclusively GHA, likely due to its deep integra-
tion within GitHub, the most popular hosting platform.

The need for “better support of multiple platforms” also explains several
migrations. For 5 out of 6 cases, GHA was the target of choice, as it supports
the most common operating systems such as Linux, Windows, and macOS.
One respondent (R;2) actually migrated from CircleCI to Azure DevOps with

Pooya Rostami Mazrae et al.

Table 7 Reasons for completed migrations.

migration reason migration from migration to respondents
Travis GHA 10 11 13 21 22
Having less restrictions Travis Azure DevOps 12 19
on the free tier Travis CircleCI 813
Travis Zuul 19
Using a more reliable Travis GHA 481320 21
CI tool Travis CircleCI 13 18
AppVeyor GHA 9 22
CircleCI GHA 18 22
Better integration CircleCI Azure DevOps 12
with hosting platform Azure DevOps GHA 12
Jenkins GHA 18
Travis GHA 22
AppVeyor GHA 9 22
Better support of CerI?CI GHA 22
multiple platforms e Gl e
Azure DevOps GHA 12
CircleCI Azure DevOps 12
Decreasing the amount CircleCI + Jenkins GHA 18
of CI tool co-usage Travis + AppVeyor Azure DevOps 9
. Azure DevOps GHA 15
Having better features Jenkins Concourse 5
Moving to a successor CI Hudson Jenkins 15 22
Making the project
open source GitLab CI/CD GHA 2
Moving to a
new ecosystem GitLab CI/CD TeamCity 7
Reducing the
maintenance burden Jenkins Azure DevOps 12

the aim of a better integration with GitHub and a better support for Windows,
but this was before GHA existed. They migrated from Azure DevOps to GHA
a bit later.

Another reported reason to carry out migrations relates to the CI co-usage
that we analysed as part of RQ)2.1, namely to “decrease the amount of CI tool
co-usage”. While the results of RQ- 1 highlighted the need to co-use multiple
CI tools for specific reasons, it comes at a certain cost and increased effort:
“Co-usage introduces at least two difficulties. You need to maintain both, they
have sometimes different syntax in the YAML files, so you have to have more
knowledge so it’s more work, that’s sort of the first issue. The second issue I
see is for example for code coverage. If you do code coverage on both platforms
and you want to merge your code coverage, it might be difficult, [...] whereas
when you have only one CI/CD provider, it’s much easier because there is only
one workflow” [Rys]). Therefore, project maintainers keep track of the evolv-
ing functionalities of the available CI tools in order to seize the opportunity
to reduce the maintenance overhead caused by using multiple CI tools. For
example, Rig replaced a combination of CircleCI and Jenkins by GHA, while
Ry replaced Travis and AppVeyor by Azure DevOps since they wanted “to
unify our pipelines and have everything in one place”. In both cases, the new

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 35

CI tool supported all the needs that were previously covered by the two CI
tools being co-used.

“Having better features” was reported as a migration reason twice. Ry
reported moving from Jenkins to Concourse because “I really want a good
visualization from the whole flow. Concourse gives me that, and not only per
single repository. That’s the critique I have to most tools. Pipelines are linked
to single git repos. Concourse not. Pipelines are completely independent from
your all of your code basis”. Rys reported a migration from Azure DevOps
to GHA because “ [they] knew some news that Microsoft was going to invest
on GitHub Actions and not investing lots of effort on Azure DevOps. The
features that GitHub Actions provides for writing and customizing plugins |[...]
encouraged our team to decide to have a migration.”

Other noteworthy reported migration reasons were:

— “To move to the successor CI tool”. This reason was mentioned by two
respondents that migrated from Hudson to its next generation open source
successor Jenkins.

— “Making the project open source” was the reason that caused Rs to migrate
from GitLab CI/CD to GHA: “we wanted to have something that we can
show the open source code for the DevOPS pipeline. Since GitHub provides
a free runner, and the open source code of the application is on GitHub,
we went there.”

— R; reported “moving to new ecosystem” as the reason to migrate from
GitLab CI/CD to TeamCity since they wanted to make use of the full
JetBrains tool suite.

— Rys reported “reducing the maintenance burden” as the main reason to
migrate from Jenkins to Azure DevOps: “So what drove a migration from
Jenkins to Azure DevOps was the maintenance burden of Jenkins. I think
we almost had one person full time, just maintaining Jenkins.”

Respondents are constantly looking for more appropriate CI tools. Most of
the reported migrations are away from Travis and towards GHA, a con-
sequence of Travis’ change in free tier and reliability issues. Migrations
towards GHA are primarily due to its generous free tier, its deep integra-
tion with GitHub, and its support for the most common operating systems.

R(Q2.5 What are the difficulties in carrying out a CI migration?

In RQ-.o we observed that many respondents migrated from one CI tool to
another one. Because the different CI tools have different philosophies, ap-
proaches and configuration files, it might be difficult to migrate to another CI
tool. We therefore explicitly asked the respondents to report on their experi-
ence.

Many respondents (Rs, R1g, R13, Ra1) reported having faced no real prob-
lems in moving from one CI tool to another one. For instance, Ry reported

36 Pooya Rostami Mazrae et al.

“I think it was around 8 days. And the reason it was short is because the De-
vOps pipeline was very simple so we just installed”. Similarly, Rs described
their migration was not a hard process. Given that the destination CI tool was
already being used by their company, so they had a basis on which to build
specific pipelines for their project: “we have to create pipelines for ourselves
for our code [...] but there is already quite some investment in a number of
standardized pipelines, it’s not really that we have to start from zero. We can
start by duplicating a pipeline and adapting here and there for some tooling
that we are running.” [Rs].

The remaining 18 respondents did mention having faced difficulties dur-
ing CI migration, but the reported reasons were very diverse. One recurrent
reason had to do with the learning curve to master the syntax of the new
CI tool. Many contemporary CI tools use a YAML-based syntax to describe
their workflows or pipelines (e.g., GHA and Travis), while others may use a
totally different way to specify CI pipelines, and the differences in syntax and
semantics were reported to cause migration difficulties by several respondents:

Ry3: “There is no standard way to publish libraries because you want to still
reuse pipelines between jobs, between software. In CircleCI it’s called orbs,
in GitHub Actions this is the Action libraries, in Jenkins it’s another one,
so there is always a learning curve, even if you know the command to type
in the CI. You need to learn the CI tool [...] that really takes a lot of time”.

Rg: “Sometimes for example environment variables are differently set in the
CI systems or some other minor differences between the providers.”

Ris: “Something interesting you might want to look at are the commits of
somebody doing a migration. You will see that you do a lot of typos and
try to run the CI/CD 20 times until it works once. You copy-paste some
examples from the Internet, you adapt it, but you forget to like there’s a lot
of details. It’s often YAML files that are really prone to mistakes. So you
make [lots of] commits until you get to the result you want to have. And
there’s no way to pre-test it on your local machine. So you just commit,
push, wait for the build to run, and then look at the results. So that’s why
a migration might take some time”.

Solutions are being proposed to reduce this learning curve. For instance, dag-
ger.io provides a way to unify workflow specifications across different CI tools,
by offering cross-language instrumentation through dedicated APIs. For exam-
ple, developers may use the Go SDK to develop all of their CI/CD pipelines
using the Go programming language, or the CUE SDK to use the CUE con-
figuration language. In both cases, it avoids needing to know and learn the
specific YAML (or other) variants being used by CI tools.

Ry reported on the lack of an easy way to ensure the correct execution
and behaviour of pipelines within the CI migration target: “Difficulties when
you migrate a CI/CD tool is just the time it takes to verify that it works.
Because usually [...] you have to do changes to your repository, and then you
have to wait until the CI/CD tools pick up the changes, run the script and tell
you back. So the feedback cycle is just slow. Or when I move the automated

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 37

releases script, semantic release, from Travis to GitHub Actions, I actually
had to do a release to test, to verify that it works. So that took time.”

Ry5 experienced migration difficulties due to completely different architec-
ture and security models: “The worst migration that I've done is from Travis
to Azure DevOps. That was so difficult because they are completely different
systems with different security models and different architectures and that took
a whole team working for a week to migrate.”

Three respondents actually considered migrating to a new CI but, in the
end, decided not to for various reasons. Rg considered Azure DevOps as a re-
placement of a proprietary in-house CI tool used in a big commercial company.
The “lack of developer familiarity with the new CI” and the “lack of scalabil-
ity of Azure DevOps” were the main reasons holding the company back from
migrating. Azure DevOps’ capabilities did not match the company’s needs
for handling a high number of builds per day and having enough flexibility
and scalability. Ri9 explained that their company was using Azure DevOps,
GHA and a custom-built CI tool at the same time. They were considering a
definitive migration towards GHA to reduce the number of co-used CI tools
but eventually decided against the migration, in order to keep the benefit of
running multiple builds in different CI tools in parallel. Similarly, R;g decided
not to perform a migration from Azure DevOps to GHA because the latter
missed an important feature for continuous delivery and deployment: “we pay
the Microsoft service [for Azure DevOps | because it’s a company [and] so you
get the support and everything. If we would go to GitHub Actions, we would
switch to the professional paid plan [...] but there is something in Azure De-
vOps which GitHub Actions does not have. It’s the Release Pipelines, which is
much more evolved” .

Respondents reported a wide range of difficulties during migration to a new
CI tool: the learning curve, fundamental differences between the source and
target of the migration, the trial-and-error nature of configuring a new CI
tool, the lack of familiarity with the new CI tool, and important missing
features for continuous delivery and deployment.

6 Discussion

This section discusses important additional insights about CI usage that we
have been able to gain from the interviews. Some of these insights did not align
with specific interview questions, and others emerged as side-remarks that we
consider nevertheless important to discuss here, since they provide additional
insights into why developers use specific CI tools or why they decide to migrate
to other CI tools.

Section [6.1] starts by discussing the many aspects surrounding GHA that
have caused it to become one of the dominant CI tools today. Section [6.2
explains how the open source nature of projects or the CI tools used by them

38 Pooya Rostami Mazrae et al.

can play an important role in the CI tool being used. Section[6.3]discusses why
some CI tools have been subject to restrictions on their free tier. Section [6.4]
presents some potential future directions for CI tools, as suggested by interview
respondents. Finally, Section [6.5] reflects on the need to have a sufficiently
diverse CI landscape in order to satisfy the varying needs of CI tool users, as
well as to reduce the risk of certain CI tools taking a monopoly position.

6.1 On the use of GitHub Actions

Research goal G5 aimed to understand how and why developers have migrated
to different CI tools and, in particular, why GitHub Actions has become the
dominant CI tool in the current CI landscape. The CI tool usage reported
in Table 4] and the migration cases reported in Figure |3| signal the increasing
popularity of GHA. This corroborates the quantitative study by Golzadeh et
al. [11] who observed that only 18 months after its introduction, GHA has
become the dominant CI on GitHub.

Anticipating the popularity of GHA among respondents, the interview
questionnaire included a question about valuable features of GHA that were
appreciated by respondents, and that caused some of them to migrate to GHA
as their CI of choice. Respondents mentioned a variety of reasons for doing this
migration: the excellent integration of GHA into GitHub; the fact that it pro-
vides a generous free tier for open source projects; its support of a wide range
of operating systems and hardware architectures; the availability of a large
marketplace of reusable actions; and the availability of better features than
some competing CI tools. Each of these valuable features have contributed
to GHA’s popularity. Another driver for this popularity was the increasing
dissatisfaction with Travis (as reported in RQ15).

Among many other reasons, the company behind Travis failed to correctly
communicate about important security issues. Some of those issues can be
very dangerous and impactful, such as the exposure of customer-specific secret
environment data such as signing keys, access credentials, and API tokens for
a duration of 8 days in 2021@ Using GHA instead of Travis is of course
no guarantee that security concerns will not arise. For instance, in RQ1. 5 we
reported some potential problems and examples of important security issues
related to GHA as well.

We also conjectured that the acquisition of GitHub by Microsoft in June
2018 may have played are role in GHA popularity. Given that GitHub is the
most popular hosting platform for OSS projects, its acquisition by a big tech
company is likely to have at least some impact on the use of its integrated
CI service GHA that was publicly released in November 2019. We asked the
interview respondents whether the acquisition by Microsoft was perceived as
positive or negative. While 14 out of 22 respondents answered that GitHub’s
acquisition did not have any impact on their CI choice, 8 respondents did say

10 https://nvd.nist.gov/vuln/detail/CVE-2021-41077

https://nvd.nist.gov/vuln/detail/CVE-2021-41077

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 39

that it somehow played a role, raising both arguments in favour or against this
acquisition. On the negative side, some respondents raised concerns against the
acquisition. For instance, R;5 prefers using GitLab for his personal projects
because of that: “Personally, I'm using GitLab for my own project. I don’t
like the Microsoft concept and owning the company or something like that.”
On the positive side, Microsoft’s attitude toward OSS has improved recently.
Ryo reported that “These last years, Microsoft is really doing huge changes
internally to make their reputation change about open source. I think Microsoft
is changing its point of view on open source and I think it’s for the greater good
of open-source developers”. In a similar vein, Rs reported “For me there are
two wversions of Microsoft, before and after Satya Nadella became the CEOQ.
With Satya Nadella as CEO that’s for me, the V2 of Microsoft as it became
much more open source friendly. [...] So when I heard the news that Microsoft
bought GitHub I wasn’t really too afraid. I would have been more concerned of
that acquisition if it would still have been the V1 Microsoft with Steve Ballmer
and all that.” Another positive aspect of the acquisition is that it has enabled
GHA to grow rapidly in functionality and performance. Ry; appreciated the
fact that “every month GitHub is releasing something new: the code Explorer,
GitHub Actions, [...] So at least the switch to Microsoft was good to get a
bit more into the business.” Ris confirms this: “Now we actually have GitHub
Actions. We have a lot more performance things in GitHub that we had in the
past, so for me that change was kind of fine.” This vision is shared by Rg: “I
think the impact of Microsoft buying GitHub so far has been pretty positive,
and it has only made GitHub more useful.”

Next to GHA, Microsoft is offering Azure DevOps as a competing CI prod-
uct that is part of the Azure cloud-based ecosystem, and many respondents
reported having used it. One could wonder how sustainable it is for a company
to continue supporting two competing CI solutions with similar functionalities.
We observed two cases of respondents having migrated from Azure DevOps
to GHA (see Fig. . Respondents that used Azure DevOps valued its tight
integration in the Azure ecosystem and the technical support offered by Mi-
crosoft. For example, Ry4 reported: “In my current company we are using
whatever tool Microsoft is providing. One reason is that we are using Azure
Portal, Azure DevOps, Azure anything. So we consider that it’s better to build
our pipeline using Azure [...] In Azure, there are more plugins and more op-
tions for using it in the Microsoft world. Because we are using Azure DevOps,
all the repositories are in the same place as pipelines and also all the Scrum
boards are in there”.

6.2 Open source nature of CI tools

The open source nature of the software project and/or the CI tool was reported
by multiple respondents as playing an important role in the choice of CI tool.
Some OSS projects specifically select or impose the use of open source CI tools,
as it matches the nature and mindset of their open source policy. For instance,

40 Pooya Rostami Mazrae et al.

R3 mentioned that “for some practical reason, but also maybe ideological, we
like to use open source solutions and have to control on our software that
we use.” Similarly, respondent Ryo argued “Philosophically, we don’t like the
company that bought Travis. They just have different values then we have in
our open source projects.”

OSS projects may also select specific CI tools for more pragmatic reasons.
For example, Ry chose GitHub as a platform to demonstrate their open source
code, not because GitHub itself is open source (it is not), but because it is
the most popular platform for hosting OSS projects: “The reason is that we
wanted to have something that we can demonstrate, like show the open source
code for the DevOps pipeline. And since GitHub provides a free runner, and
the open source code of the application is on GitHub we went there.”

Rs also argued that the choice of a CI tool depends on whether the project
using it is open source or commercial: “The requirements for an open source
project are usually quite different from a commercial project. [... If it is] only a
CI for an open source project and you need to build a package that you want to
have published in registries, then for example GitHub CI would be completely
satisfying. Because GitHub Actions gives me all the building blocks which I
need at that moment. But if I want to build a product with all the testing, all
the quality gates validation in a number of environments before going to have
a real live environment then I would still search for something which gives me
the full flow and have more ability to model that full flow.”

The interviews revealed that 8 respondents involved in OSS projects pre-
ferred using the free tier solution of a commercial CI tool (mostly GHA, Travis
and GitLab CI/CD) since OSS projects often have very limited financial re-
sources to develop and maintain their software. Ri9 explained the decision-
making process for choosing another CI tool due to restrictions imposed on
the free tier of Travis: “I had the choice to either pay for it or mot remain
on Travis. And then I figured out I had a lot of other options. We could use
sponsored money or donations to pay for it, but I felt it would be more respon-
sible for our project to not spend that money on Travis, but rather save the
money and just move over to another free service instead”. R1y also “decided
to change to go to GitHub Actions that was free”. This shows that changes in
the pricing policy or restrictions imposed on the free tier of the CI tool may
incite or even force OSS projects to migrate to other CI tools.

On the other hand, commercial projects tend to prefer using paid, commer-
cial CI tools because they offer a better service-level agreement and technical
support in case of reliability problems. R14 who used Azure DevOps in a com-
pany said “The problem with Microsoft Azure is money. You need to spend a
lot of money, but the tools that you are getting from Microsoft [...] are more
powerful than the others. [...] If I had money, I'd migrate [my projects] to
Azure.”

Some respondents were not satisfied with any of the existing open source
or commercial CI tools. As a consequence, they rely on custom-built CI tools
in their companies. These Cls were created to support the specific needs of
the company. For example, Rg mentions that their company “built its own

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 41

proprietary CI/CD pipeline which now operates to deploy thousands of deploy-
ments per day. It was loosely based on Jenkins for a while.” More specifically,
“it started as a kind of deployment of Jenkins that evolved over time into an
actually proprietary system that’s built from scratch”.

One aspect in favour of open source CI tools would be the ability to con-
tribute changes back to the OSS project. However, Rg argued that it not
always easy to do so, due to the community’s latency of accepting changes:
“Contributing back to the community is not always possible because volunteer-
based projects face the challenge that you have of contributing back to popular
open source projects. Not everybody’s contributions are going to be able to be
accepted. So I think a latency is introduced by this.”

6.3 Restrictions on the free tier of CI tools

Among the main shortcomings that were identified in R(@); 5, the restrictions
imposed on the free tier of CI tools were frequently reported by the respon-
dents. These restrictions cause many projects to select an alternative CI tool
offering more computation resources or more build time. Travis was frequently
reported by the respondents as being too restrictive on its free tier. Its decision
to impose more restrictions on its free tier in 2020 was even one of the main
reported reasons for OSS projects to migrate to another CI. We investigated
the rationale behind imposing such restrictions, and we found that the decision
was mostly driven by abusive cryptominers.

Li et al. [42] studied the phenomenon of Cl-jacking which, in other words,
correspond to the abuse of CI tool resources for mining cryptocurrencies.
Through an empirical analysis of GitHub repositories and log files on CI plat-
forms, they found 1,974 instances of Cl-jacking, with an estimated revenue of
over $20, 000 per month using the computational resources of the CI tools’ free
tier. This abuse has led CI providers to impose stronger limitations on their
free tiers[™]

For example, Travis motivated its decision to change its pricing model as
follows [43]: “[...] we have encountered significant abuse [...] (increased ac-
tivity of cryptocurrency miners, TOR nodes operators etc.). Abusers have been
tying up our build queues and causing performance reductions for everyone.”
Similarly, in February 2021, the Director of Product Management of GitHub
publicly announced strong restrictions on the free tier of Azure DevOps due
to “a high percentage of new public projects in Azure DevOps being used for
crypto mining and other activities we classify as abusive” [44].

Two interview respondents confirmed this abuse by cryptominers, and the
harm it is causing to OSS projects whose functioning often depends on the
ability to benefit from the resources offered by the free tiers of cloud-based CI
tools: “in recent years people have been abusing a CI/CD solution for mining
bitcoins. This is annoying for the open source community because we rely on

1 https://webapp.io/blog/crypto-miners-are-killing-free-ci/

https://webapp.io/blog/crypto-miners-are-killing-free-ci/

42 Pooya Rostami Mazrae et al.

those tools. Those tools are really critical for the open source communities to
continue to build and secure the toolchain” [Ry3]. In addition to this, Re; ex-
plained that cryptominers not only affect computational resources, but also
impact human resources that need to check for the presence of cryptomin-
ers: “a human has to review the code [of new contributions] and make sure
that someone is not trying to install a cryptocurrency miner on our Jenkins
installation.”

6.4 Future of CI tools

Since their inception, CI tools have come a long way, continuously adding new
automation facilities to support an increasing range of software development
activities. It is beyond doubt that CI tools are widely adopted and play an
important role in both OSS and commercial software development [10}/11].

As part of the open-ended closing question of each interview, respondents
were asked to share important remarks related to CI tools. Some respondents
used this opportunity to share their opinion on the expected future of CI tools
and how these tools will become integrated with other software development
components.

Ry expressed the idea of having a whole physically independent infras-
tructure that can use the full existing features of a social coding platform,
including a software development environment, version control system, issue
tracking system, online coding environment, and a GHA-like CI: “[/compa-
nies and developers] want someone like GitHub to host a version of GitHub
for them. That means that you would get your own thing hosted on GitHub’s
own hardware, but it will be physically separated but still integrated with the
github.com platform. The main benefit of that is that you don’t need to think
about your custom actions runner and things like CodespacesE Development
in the cloud will become very relevant in future. And when you want to keep
self-hosting, it’s not only about hosting the git platform. It will be more and
more about also hosting all these other things like the CI/CD environment,
which is GitHub Actions for GitHub, and the cloud development platform,
which is Codespaces. It’s going to get harder and harder to self-host [while] a
service hosted version will become much more attractive.” Other companies,
such as gitpod.io have also started providing similar cloud development envi-
ronments, that can be integrated with one’s preferred social coding platform
(e.g., GitHub, GitLab or BitBucket).

Rg suggests considering CI in the full software development lifecycle: “CI/CD
is part of a broader system of continuous delivery of software. Looking at it
in isolation is like looking at just a portion of a full pipeline. Delivering soft-
ware begins at this ideation phase and ends when a user interacts with it. And
CI/CD has this role to play, but it is not the entire spectrum. So CI/CD needs
to be looked at in the context of the rest of the engineering system being used

12 https://visualstudio.microsoft.com/services/github-codespaces/

https://visualstudio.microsoft.com/services/github-codespaces/

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 43

to deliver software in a particular place, whether it be OSS or in different pro-
prietary setups.” Rs shared this point of view: “If I want to build a product
with all the testing, all the quality gates wvalidation in a number of environ-
ments before going to have a real live environment, then I would still search
for something which gives me the full flow [...]”.

Ry also considered there is room for improvement, notably to address the
amount of data that needs to be downloaded each time a CI process is ex-
ecuted: “there would be automated ways to reduce the amount of data that’s
downloaded from the providers. Some sort of automatic caching. And the other
thing is to also have some automatic caching of compiler outputs. But both
things are probably not so easy to do in a generic fashion”. Indeed, CI tools
are known to incur a high cost, because of the computational resources they
require, combined with the frequency of running builds. Minimizing execution
time of CI workflows is crucial, as it enables timely feedback to developers,
avoiding them to switch to other tasks while waiting for the CI workflows to
complete, which is known to be a costly operation for knowledge workers.

Existing CI tools could benefit from integrating recent research advances
that have been made along these lines. For example, CloudBuild, a proprietary
CI tool with caching capabilities, was proposed by Microsoft to speed up build-
ing and testing software products [45|. Similarly, Gallaba et al. [46] proposed
an approach to accelerate CI builds by caching the build environment and
skipping unaffected build steps. Abdalkareem et al. |[47] proposed another way
to speed up build time by skipping commits that should not trigger builds. For
this purpose, they developed a machine learning technique that automatically
identifies which commits can be safely skipped [48]. In the same vein, Jin et
al. [49] introduced SmartBuildSkip, an approach to reduce CI cost by running
fewer builds while running as many failing builds as early as possible. Based
on an empirical comparison of 10 Cl-improving techniques [50] they proposed
PreciseBuildSkip [51] as an improvement over SmartBuildSkip.

6.5 On the diversity of the CI landscape

R@1 1 revealed a wide diversity of CI solutions having been used by respon-
dents. RQ; 4 further revealed that, even if the most popular CI solutions cov-
ered most of the desirable features, there were still valid reasons for using
less popular CI tools because they were offering specific valuable features that
could not be found in the more popular CI tools. This was confirmed in RQs .2
where respondents identified many reasons for co-using CI tools, such as the
need to support specific hardware platforms or operating systems, access to
specific features, and the ability to use more computing resources by running
multiple CI tools in parallel. This shows the importance of maintaining a wide
diversity of CI tools, each having their own set of features, advantages and
shortcomings. R even goes one step further by claiming that there still is
plenty of room for new contenders in the CI landscape: “a lot of people think
that tools regarding CI/CD is already a well-equipped market. But personally I

44 Pooya Rostami Mazrae et al.

think there is still a lot of room for improvement. If there would be a contender
really thinking out of the box [...] I think he would still make a fair chance of
getting a decent market share”.

Nevertheless, in response to RQ2 3 as well as in Table [d] we observed a gen-
eral tendency to migrate towards the more popular cloud-based CI tools (such
as GHA, Azure DevOps and GitLab CI/CD). The ever stronger integration
of these CI tools in their social coding platform, compounded by the fact that
workflows and pipelines are increasingly relying on reusable building blocks
(such as Actions, Orbs and plugins) makes it more difficult to migrate away
from them. This leads to an increased risk of vendor lock-in, that may lead
to a monopoly position of some CI providers, ultimately resulting in a lack of
innovation due to absence of competition.

GitHub, the de facto solution for open source projects nowadays, is a good
example of potential vendor lock-in by a private company owning the dominant
platform for distributing open source software. Rg was concerned about this
risk: “The only kind of concerns, obviously, to have the vendor lock-in and kind
of monopoly situation.” Ry1 shared this viewpoint: “From an ethical point of
view it’s a pity that GitHub and Microsoft joined together.” At some point
in the future, Microsoft might change its strategy to try to profit from its
monopoly: “There are intangible benefits that Microsoft gets and we’ll see if
changes happen in the next few years, to where GitHub makes changes to be
more profitable and that don’t necessarily serve the free software folks. [...] I
have mized feelings about it, on the one hand, it really is convenient having
everything integrated at one place. On the other hand, how much do we really
want to invest all of open source in a single company?” [Ro1]

Nevertheless, it seems like respondents are aware of this risk and still will-
ing to use GitHub, while keeping their options open to move to other CI
alternatives: “so far I think, for us, it’s been a positive experience. But we are
aware of these dangers and we would be ready to move to another platform if
we have to” [Ry). Similarly, R; reported to “have alternatives in case there
is something that changes in the GitHub CI user conditions. For instance, If
GitHub Actions becomes irrelevant or not practical given the conditions of the
project, then we know that there is a simple way to just use TeamClity instead
of GitHub Actions.”

7 Threats to validity

Here we discuss the threats to the validity of our work.

Internal validity relates to whether an experimental treatment or condition
makes a difference or not [52]. Given that our analysis is based on subjective
interviews, the main threat pertains to which questions we asked, how, and
in which order. A different set of questions, different order, or even different
phrasings could have led to different responses. We reduced this threat by
carefully verifying the interview protocol, and carrying out dry-runs on three
different persons, before actually starting the study. Moreover, the open-ended

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 45

nature of the interviews provided ample opportunities for respondents to pro-
vide additional contextual information that was not necessarily directly related
to the questions being asked.

External validity is concerned with the generalisability of the approach and
the representativeness of the results [52]. We strove to have a good balance
in respondent profiles covering both open source developers and industrial
practitioners. While we strove to have a balanced selection of respondents
in terms of geographical distribution, we acknowledge that Eastern Europe
as well as the Australasian and African regions are underrepresented in our
population. The inclusion criteria that have been used for selecting interview
candidates also introduced a deliberate selection bias towards developers with
proven practical experience with CI. As a result we cannot claim that the
results generalise to less experienced developers.

Construct validity concerns the relation between the theory behind the
experiment and the observed findings [53]. Given the qualitative nature of
our study, the mean threat pertains to how we have interpreted the responses
obtained from the interviews. To mitigate this risk, we have relied on the well-
established process of deductive and inductive coding, which involved multiple
authors in order to further lower the risk of making incorrect interpretations.

Conclusion validity deals with the degree to which reasonable conclusions
have been reached from the collected data [54]. One might argue that hav-
ing more respondents could have increased the support of our findings. Since
we continued interviewing respondents until we reached saturation in the re-
sponses, we believe that the conclusions made are reasonable, especially given
the qualitative nature of this paper, as we do not aim to show any statisti-
cal significance of our observations. Moreover, some of the qualitative findings
have been triangulated with quantitative results reported in earlier work.
Geopolitical reasons may have implicitly affected some of the received re-
sponses. For example, European respondents are subject to other privacy reg-
ulations (GDPR) than non-European ones, which could have influenced their
preference toward CI tools maintained in Europe. As another example, the
acquisition of GitHub by Microsoft, an American company, could have influ-
enced some respondents in favour or against the use of GHA as a CI tool. Also,
two respondents reported not having been able to use some popular commer-
cial CI tools since a ban was imposed on certain countries (such as Iran). This
is not a problem per se, since the conclusions drawn from the interviews are
actually supposed to reflect and capture this diversity in decisions.

8 Conclusion

This article presented the results of a qualitative analysis aiming to understand
the reasons behind CI tool usage, co-usage and migration. The analysis is based
on online interviews with 22 experienced software practitioners with proven
expertise in CI tools. The interview respondents were involved in OSS as well

46 Pooya Rostami Mazrae et al.

as in commercial projects, and reported on the use of 31 different CI tools, of
which 14 were used by at least two respondents.

The large number of CI tools used by the respondents, the reasons to
use them, and the wide range of activities to automate highlight how di-
verse the landscape of CI solutions is. The main reasons for CI usage were
to increase reliability, productivity, security, and speed while reducing cost
and effort. The main supported activities were build automation, unit testing,
security and quality analysis, dependency management, release management
and automated deployment. While the valuable features and shortcomings of
CI tools have not fundamentally changed in comparison to previous studies,
we observed a clear technological shift towards more cloud-based solutions
integrated in social coding platforms (such as GHA, GitLab CI/CD, Azure
DevOps).

We observed that it is common practice to use multiple CI tools in paral-
lel in order to support a wider range of hardware architectures or operating
systems, as well as to benefit from complementary features offered by the differ-
ent CI tools and to counter resource limitations. We also observed a migration
away from Travis, due to lack of reliability, feature stagnation and restrictions
imposed on its free tier. At the same time we observed a migration towards
GHA due to its deep integration into the popular GitHub social coding plat-
form, its generous free tier, its build support for the major operating systems,
and its support for reusable Actions. The main reported migration difficulties
had to do with the learning curve because of the differences between the source
and target CI tools.

Our analysis provided qualitative insights into the reasons behind the im-
portant changes in the CI landscape that were quantitatively reported in [11].
This changing landscape has opened up a wide range of research opportunities,
such as more empirical research on the impact of reusable workflow compo-
nents (such as GitHub’s Actions and CircleCI’s orbs), an in-depth analysis
of the risks of vendor lock-in, and technical solutions to further speed-up CI
execution.

Acknowledgments

This work is supported by the ARC-21/25 UMONS3 Action de Recherche
Concertée financée par le Ministére de la Communauté frangaise — Direction
générale de I’Enseignement non obligatoire et de la Recherche scientifique, as
well as by the Fonds de la Recherche Scientifique - FNRS under grant numbers
0.0157.18F-RG43 and T.0149.22 and F.4515.23.

Conflict of Interest

The authors declare that they have no conflict of interest.

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 47

Data Availability Statements

All data generated or analysed during this study are included in this published
article (and its supplementary information files). Except for two interview
transcripts, the extracted information is available in the article content but
the interview transcripts themselves are not accessible to the public due to the
interviewees’ request.

References

10.

11.

12.

13.

14.

15.

. Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving

software quality and reducing risk. Addison-Wesley Professional, 2007.

. A Shahin, M.A. Babar, and L. Zhu. Continuous integration, delivery and deployment: A

systematic review on approaches, tools, challenges and practices. IEEE Access, 5:3909—
3943, 2017.

. Kent Beck. Extreme programming explained: embrace change. Addison-Wesley Profes-

sional, 2000.

. Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov.

Quality and productivity outcomes relating to continuous integration in GitHub. In
Joint Meeting on Foundations of Software Engineering (FSE), pages 805-816, 2015.

. Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,

costs, and benefits of continuous integration in open-source projects. In International
Conference on Automated Software Engineering (ASE), pages 426-437. IEEE, 2016.

. Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build:

An explorative analysis of Travis CI with GitHub. In International Conference on
Mining Software Repositories (MSR), pages 356367, 2017.

. David Widder, Bogdan Vasilescu, Michael Hilton, and Christian Késtner. I'm leaving

you, Travis: a continuous integration breakup story. In International Conference on
Mining Software Repositories (MSR), pages 165-169. IEEE, 2018.

. Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and Michael

Stumm. Continuous deployment at Facebook and OANDA. In International Conference
on Software Engineering (ICSE), pages 21-30. IEEE, 2016.

. Helena Holmstrom, Eoin o} Conchuir, J Agerfalk, and Brian Fitzgerald. Global soft-

ware development challenges: A case study on temporal, geographical and socio-cultural
distance. In International Conference on Global Software Engineering (ICGSE), pages
3-11. IEEE, 2006.

Eliezio Soares, Gustavo Sizilio, Jadson Santos, Daniel Alencar da Costa, and Uird
Kulesza. The effects of continuous integration on software development: a systematic
literature review. Empirical Software Engineering, 27(3):1-61, 2022.

Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the rise and fall of CI services
in GitHub. In International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2022.

Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and Christoph Treude. How do
software developers use GitHub actions to automate their workflows? In International
Conference on Mining Software Repositories (MSR), 2021.

Lianping Chen. Continuous delivery: Huge benefits, but challengs too. IEEE Software
- special issue on Release Engineering, 32(2):50-54, 2015.

Daniel Stahl and Jan Bosch. Experienced benefits of continuous integration in industry
software product development: A case study. In TASTED International Conference on
Software Engineering, pages 736743, 2013.

Joao Helis Bernardo, Daniel Alencar da Costa, and Uird Kulesza. Studying the impact
of adopting continuous integration on the delivery time of pull requests. In International
Conference on Mining Software Repositories (MSR), pages 131-141. IEEE, 2018.

48

Pooya Rostami Mazrae et al.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Omar Elazhary, Colin Werner, Ze Shi Li, Derek Lowlind, Neil A. Ernst, and Margaret-
Anne Storey. Uncovering the benefits and challenges of continuous integration practices.
IEEE Trans Softw Eng, 48(7):2570 — 2583, 2022.

Lianping Chen. Continuous delivery: Overcoming adoption challenges. Journal of Sys-
tems and Software, 128:72-86, 2017.

Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An empirical
analysis of build failures in the continuous integration workflows of Java-based open-
source software. In International Conference on Mining Software Repositories (MSR),
pages 345-355. IEEE, 2017.

Robin M Betz and Ross C Walker. Implementing continuous integration software in
an established computational chemistry software package. In International Workshop
on Software Engineering for Computational Science and Engineering (SE-CSE), pages
68-74. IEEE, 2013.

Jixiang Lu, Zhihong Yang, and Junxia Qian. Implementation of continuous integration
and automated testing in software development of smart grid scheduling support system.
In International Conference on Power System Technology, pages 2441-2446. IEEE,
2014.

M Kulas, Jose Luis Borelli, Wolfgang Géssler, Diethard Peter, Sebastian Rabien,
Gilles Orban de Xivry, Lorenzo Busoni, Marco Bonaglia, Tommaso Mazzoni, and Gus-
tavo Rahmer. Practical experience with test-driven development during commissioning
of the multi-star AO system ARGOS. In Software and Cyberinfrastructure for Astron-
omy III, volume 9152, pages 110-119. SPIE, 2014.

Johannes Gmeiner, Rudolf Ramler, and Julian Haslinger. Automated testing in the
continuous delivery pipeline: A case study of an online company. In International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW), pages
1-6. IEEE, 2015.

Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massimil-
iano Di Penta. How open source projects use static code analysis tools in continuous
integration pipelines. In International Conference on Mining Software Repositories
(MSR), pages 334-344. IEEE, 2017.

Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. An empirical study
of the long duration of continuous integration builds. Empirical Software Engineering,
24(4):2102-2139, 2019.

Carmine Vassallo, Sebastian Proksch, Harald C Gall, and Massimiliano Di Penta. Auto-
mated reporting of anti-patterns and decay in continuous integration. In International
Conference on Software Engineering (ICSE), pages 105-115. IEEE, 2019.

Yash Gupta, Yusaira Khan, Keheliya Gallaba, and Shane McIntosh. The impact of
the adoption of continuous integration on developer attraction and retention. In In-
ternational Conference on Mining Software Repositories (MSR), pages 491-494. IEEE,
2017.

David Gray Widder, Michael Hilton, Christian Kéastner, and Bogdan Vasilescu. A con-
ceptual replication of continuous integration pain points in the context of Travis CI. In
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 647-658, 2019.

Tingting Chen, Yang Zhang, Shu Chen, Tao Wang, and Yiwen Wu. Let’s supercharge
the workflows: An empirical study of GitHub Actions. In International Conference on
Software Quality, Reliability and Security Companion (QRS-C), pages 01-10. IEEE,
2021.

Pablo Valenzuela-Toledo and Alexandre Bergel. Evolution of GitHub Action work-
flows. In International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2022.

Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. On the use
of GitHub Actions in software development repositories. In International Conference
on Software Maintenance and Evolution (ICSME), 2022.

G. Guest, A. Bunce, and L. Johnson. How many interviews are enough? An experiment
with data saturation and variability. Field Methods, 18(1):59-82, 2006.

P. I. Fusch and L. R. Ness. Are we there yet? Data saturation in qualitative research.
The qualitative report, 20(9), 2015.

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 49

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Armstrong Foundjem, Eleni Constantinou, Tom Mens, and Bram Adams. A mixed-
methods analysis of micro-collaborative coding practices in OpenStack. Empirical Soft-
ware Engineering, 27(5):120, 2022.

M. Kim, T. Zimmermann, R DeLine, and Begel A. The emerging role of data scientists
on software development teams. In International conference on software engineering
(ICSE), pages 96-107. IEEE, 2016.

A.N. Meyer, E.T. Barr, C Bird, and T . Zimmermann. Today was a good day: The
daily life of software developers. IEEE Trans Softw Eng, 47(5):863-880, 2019.

H. Russel Bernard, Amber Wutich, and Gery W. Ryan. Analyzing qualitative data:
Systematic approaches. SAGE publications, 2nd edition, 2016.

Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
Trade-offs in continuous integration: assurance, security, and flexibility. In Joint Meeting
on Foundations of Software Engineering(FSE), pages 197-207, 2017.

Martin Fowler and Matthew Foemmel. Continuous integration, 2006.

Marko Leppénen, Simo Maikinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V Maéntyla, and Tomi Mé&nnisté. The highways and country roads to continu-
ous deployment. IEEE Software, 32(2):64-72, 2015.

Akond Rahman, Amritanshu Agrawal, Rahul Krishna, and Alexander Sobran. Char-
acterizing the influence of continuous integration: Empirical results from 250+ open
source and proprietary projects. In ACM SIGSOFT International Workshop on Soft-
ware Analytics, pages 8-14, 2018.

Carmine Vassallo, Fabio Palomba, and Harald C Gall. Continuous refactoring in CI: A
preliminary study on the perceived advantages and barriers. In International Conference
on Software Maintenance and Evolution (ICSME), pages 564-568. IEEE, 2018.

Zhi Li, Weijie Liu, Hongbo Chen, X Wang, Xiaojing Liao, Luyi Xing, Mingming Zha,
Hai Jin, and Deqing Zou. Robbery on DevOps: Understanding and mitigating illicit
cryptomining on continuous integration service platforms. In IEEE Symposium on
Security and Privacy (SP), pages 2397-2412. IEEE, 2022.

Mendy, Montana and Rios, Nicolas and Rybinski, Michal. The new pricing model
for travis-ci.com. https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing,
2020. Accessed: 14.10.2022.

Machiraju, Vijay. Change in Azure pipelines grant for public projects.
https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-
for-public-projects/, 2021. Accessed: 14.10.2022.

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. CloudBuild: Microsoft’s dis-
tributed and caching build service. In International Conference on Software Engineering
(ICSE), pages 11-20, 2016.

Keheliya Gallaba, Yves Junqueira, John Ewart, and Shane Mcintosh. Accelerating
continuous integration by caching environments and inferring dependencies. IEEFE Trans
Softw Eng, 48(6):2040-2052, 2022.

Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. Which com-
mits can be CI skipped? IEEE Trans Softw Eng, 47(3):448-463, 2019.

Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. A machine learning approach
to improve the detection of CI skip commits. IEEE Trans Softw Eng, 2020.

Xjanhao Jin and Francisco Servant. A cost-efficient approach to building in continuous
integration. In International Conference on Software Engineering (ICSE), pages 13-25.
IEEE, 2020.

Xianhao Jin and Francisco Servant. What helped, and what did not? An evaluation
of the strategies to improve continuous integration. In International Conference on
Software Engineering (ICSE), pages 213-225. IEEE, 2021.

Xianhao Jin and Francisco Servant. Which builds are really safe to skip? Maximizing
failure observation for build selection in continuous integration. Journal of Systems and
Software, 188, 2022.

Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and Alexan-
der Chatzigeorgiou. Identifying, categorizing and mitigating threats to validity in soft-
ware engineering secondary studies. Information and Software Technology, 106:201-230,
2019.

https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing
https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-for-public-projects/
https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-for-public-projects/

50

Pooya Rostami Mazrae et al.

53.

54.

Paul Ralph and Ewan Tempero. Construct validity in software engineering research
and software metrics. In International Conference on Ewvaluation and Assessment in
Software Engineering, pages 13-23, 2018.

Joseph Maxwell. Understanding and validity in qualitative research. Harvard educa-
tional review, 62(3):279-301, 1992.

On the usage, co-usage and migration of CI/CD tools: a qualitative analysis 51

A Interview Questionnaire

The interview questions were structured in 6 categories. Some questions were conditional to
the responses received on previous questions:

1. General questions about the respondent:

a)
b)

o)
d)

Please briefly introduce yourself.

Report on your past and current experience in collaborative software development,
and on the kinds of projects you are or have been actively involved in, for which
CI/CD tools have been used.

What is or was your involvement in those projects?

How many years of experience do you have with CI/CD?

2. General questions about CI/CD usage:

a)

b)

When did you first start to use a CI/CD tool in those projects and what was the
reason at that time?
What are currently the main reasons for using CI/CD in those projects?

3. Questions about specific CI/CD tool usage:

)
)

Which different CI/CD tools have you used in the past, or are you currently using?
Why did you or the project maintainers decide to use that particular CI/CD tool?
What are the resources (in terms of budget, hardware, personnel, etc.) and effort
that are or were available and required for creating, hosting and maintaining the
CI/CD infrastructure for your projects?
[If one of the reported CI1/CD tools was Travis:|

— Was Travis a kind of default choice, or was it a deliberate choice?

— Are you aware of Travis ’ changes in its free plan for public repositories? Has

your project been affected by these changes?

[If none of the reported CI/CD tools was Travis or GitHub Actions:]
Why haven’t you ever used Travis or GitHub Actions?
What were the main reasons for using these CI/CD tools, and what were/are the
advantages and shortcomings of each of them according to your experience?

4. Questions about CI/CD migration: [These questions should be answered for every
project that was reported by the respondent.]

a)
b)

)

e)

Did the project migrate from some CI/CD tool to another one during its lifetime?
[In case of negative answer to 4.a:]

Even if the project did not migrate its CI/CD tool, did you ever consider migrating
to another CI/CD tool? If yes, why didn’t you carry out the migration?

[In case of positive answer to 4.a:]

— When did the project perform the migration?

— From which CI/CD tool to which other CI/CD tool?

— What drove the decision to migrate, and on which replacement CI/CD tool
to adopt? (Was the migration because you disliked something in the existing
CI/CD tool? Or because you liked something better in the replacement CI/CD
tool?)

— How much effort and time did it take to do the CI/CD migration and why?

— What were the main difficulties (if any) in doing the migration?

— How satisfied were you with the replacement CI/CD tool?
[In case the respondent did not mention GitHub Actions as a CI/CD migration
target:]

— Are you aware of GitHub Actions and its increasing popularity? Why do you
think this is the case?

— Did you ever consider using GitHub Actions for doing CI/CD?

— If not, why not? What is missing in GitHub Actions in order for the project
to migrate to it?

To what extent has the acquisition of GitHub by Microsoft in June 2018 affected
you? Did it trigger you to migrate from one platform to another, for example from
Github to GitLab or vice versa?

5. Questions about CI/CD tool co-usage:
a) Did or does the same project use multiple different CI/CD tools simultaneously?

‘Which ones?

52

Pooya Rostami Mazrae et al.

b) When and for how long have they been used together?
¢) What is or was the reason for using multiple CI/CD tools within the same project?
What is or was the purpose of each CI/CD tool?

6. Closing open-ended question:

a) Do you have any other important remarks related to CI/CD tool usage that you

would like to share with us?

B Mapping between respondents and CI/CD tools

Throughout the article we have used respondent IDs whenever we cited relevant quotes from
the interviews conducted with them. In order to put these quotes in the right perspective,
the table below provides a mapping between the respondent IDs and the CI/CD tools that
these respondents mentioned to have used somewhere during their career.

Table 8 Mapping between CI/CD tools and respondents having reported to use them.

CI tool respondent IDs

GHA 1245689101213 14 1517 18 19 20 21 22
Jenkins 124578111213 14 1516 17 18 21 22
Travis 24589101112 13 16 18 19 20 21 22
GitLab CI/CD 1234578111213 14 15 16 22
CircleCI 246891012 13 18 19 20 22

Azure DevOps 24591214 151718 19 20

AppVeyor 913 18 19 22

Hudson 4561522

TeamCity 1713

Bamboo 24

Bitbucket Pipelines 7 20

Cruise Control 46

Drone 9 22

Netlify 10 14

AWS CI/CD 5

Buildbot 18

BuildKite 13

Cirrus CI 19

Codefresh 5)

Concourse 5

Heroku 8

Jacamar CI 4

Percy 8

Pulumi 5

Sauce Labs 21

Tekton 4

Vercel 10

Zuul 19

custom-built in-house solution 6, 12, 18

	Introduction
	Related work
	Methodology
	Goal G1: Why, how and which CI tools are being used?
	Goal G2: Why and how are CI tools being co-used and what are the reasons for migrating to other CI tools?
	Discussion
	Threats to validity
	Conclusion
	Interview Questionnaire
	Mapping between respondents and CI/CD tools

