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Abstract—Software health plays an important role in col-
laborative software development. My PhD research aims to
analyse how the evolution of socio-technical characteristics in
large open source software ecosystems affects the health of these
ecosystems and their building blocks. In order to capture as many
different dimensions of software health, I aim to combine both the
human (social) and the technical aspects of collaborative software
development activity. These dimensions will be integrated into
computational machine learning models to allow us to predict
change trends in software health, as well as recommendation
models to improve future health, based on historical analysis.

I will focus primarily on evolving software packaging ecosys-
tems to study their health, as they are known to have large
technical dependency networks, as well as strong social collabo-
ration networks. In this extended abstract, I present the research
questions I am to explore on the health of such packaging
ecosystems.

Index Terms—Mining Software Repository, Software Health,
Open Source Software, Projects Abandonment, Software Ecosys-
tem, Predictive Modeling, Machine Learning

I. INTRODUCTION

The importance of the open source development has in-
creased significantly throughout the last years, covering almost
every kind of application domain [1]. Today, over 80% of the
software in technological products or services is open source
software (OSS), and this trend is still growing1. In addition
to OSS, software ecosystems play an ever increasing role
in collaborative software development practices. A software
ecosystem can be defined as a collection of software projects
which are developed and which co-evolve together in the
same environment [2]. As software projects are not usually
developed in isolation, it is important to take into account
the ecosystem of which they are part to understand the
bigger picture. Accordingly, software ecosystem analysis has
increased in importance in recent years.

Software package distributions can be considered as a
specific kind of software ecosystem. Nearly every popular
programming language is accompanied by one or more pack-
age managers of reusable software libraries. These so-called
software packaging ecosystems contain of large number of
package releases that are updated regularly and that have
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many technical interdependencies, forming huge package de-
pendency networks [3].

The challenges related to the evolution of software ecosys-
tems can be divided in two separate dimensions: the social
dimension that focuses on problems related to persons who are
contributing to, and interacting with (parts of) the ecosystem,
and the technical dimension that addresses problems related
to the technical artefacts (such as the source code, tests,
documentation, or any other artefacts) being produced or
maintained. Given that both dimensions cannot be seen in iso-
lation, socio-technical challenges will involve a combination
of technical and social issues.

Health issues in the social dimension are manifold. For
example, the so-called truck factor (TF) aims to measure the
risk of a project to stop being maintained because too many of
its core developers are abandoning (“run over by a truck”) [4]–
[6], the risk of having heroes who are the only core developers
who understand and know certain critical parts of a system [7].
Knowing the reasons why developers are leaving [8] or taking
a break [5] might help in mitigating this risk, and finding good
replacements for abandoners might further reduce the risk [6].

Health issues in the technical dimension can be related to
how packages within an ecosystem are interrelated through
transitive dependencies that may not be updated when new
package releases become available, thereby affecting ecosys-
tem health [3]. As an example, to alleviate the problem of
dependency hell, approaches like semantic versioning or using
dependency graphs [9] have been proposed. Nevertheless, the
degree of adherence to semantic versioning can differ signifi-
cantly depending on the considered package distribution [10].

An important requirement for conducting empirical studies
in this domain is having access to a data source containing
recent, reliable and sufficiently complete information about
large software ecosystems that contain evidence of socio-
technical interaction and collaboration patterns between their
components. Many studies (e.g., [1], [4], [6]–[8], [11]–[13])
gather historical project data from GitHub considering mainly
popularity metrics (e.g., number of stars or number of down-
loads). While this can be one of the factors to select projects,
other factors need to be considered as well, especially if not
all desired information is recorded on GitHub. For example,
Avelino et al. found examples of contributions to the Linux
kernel in which the entire release development was pushed
to Git in a single squashed commit, thereby masking many
individual contributions on behalf of a unique developer [14].
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Many empirical studies also concentrate on only one di-
mension of software health. To be able to study both the
social and technical dimension, we propose to concentrate on
software packaging ecosystems. They contain metadata about
the technical interdependencies between all packages. Also,
the full development history of these packages is available,
from which the social collaboration and interaction between
contributors of those packages can be retrieved. By accompa-
nying these social and technical aspects in a single overarching
socio-technical dependency network, we will be able to study
the evolution of health problems at a new level and hopefully
create new ways to improve the health of software packaging
ecosystems. Works on this matter has already started. As an
example, the Goggins et al. [15] has checked the tool named
CHAOSS which is the work of a Linux Foundation working
group to create metrics to help define community health.

My PhD research therefore aims to empirically study and
reduce socio-technical health issues in evolving OSS pack-
aging ecosystems, by determining the important features of,
and connections between, different packages that play an
important role in health issues. Based on this, I aim to provide
recommendation models and prediction models to reduce these
health issues.

To start my research, I will explore the following research
questions:

• RQ1: How to improve the overall performance of truck
factor algorithms? How to predict or recommend replace-
ment of truck factor developers by analysing the socio-
technical package dependency network?

• RQ2: How do project contributors migrate within a
software ecosystem? How do ecosystems attract, retain
or loose contributors? What is the impact of such phe-
nomena on the ecosystem health?

• RQ3: How does the socio-technical behaviour of project
contributors affect project and ecosystem health?

• RQ4: Can we rely on social media activity (e.g., Reddit,
StackOverflow, Twitter) to increase the likelihood of find-
ing new contributors for a given project in the ecosystem?

II. BACKGROUND

OSS research has studied a wide range of aspects, often
focusing on only the technical or the social dimension of
software development. Below, we cover some of these works
and how they contribute to the domain of OSS health research.

The well-known Conway’s law states that organizations
which design systems are constrained to produce systems that
mimic the communication structures of these organizations.
Cataldo et al. [16] introduced the notion of socio-technical
congruence to reflect the close connection between the tech-
nical structure of a software project and the social structure
of the project members. Syeed et al. [17] studied such socio-
technical congruence in the context of the Ruby ecosystem.
Golzadeh [18] provided an initial exploration of the socio-
technical congruence in Cargo. Any socio-technical study of
software ecosystems is likely to be affected by the socio-
technical congruence phenomenon.

Ricca et al. [7] tried to find the heroes in FLOSS projects,
by implementing a tool to compute the truck factors and
identify the heroes. The proposed tool was based on the
methods presented by Zazworka et al. [19]. Since finding a
truck factor plays an important role in software health, Ferreira
et al. [4] compared 3 different algorithms for computing it:
AVL [20], RIG [21] and CST [22]. Based on an evaluation
on 35 open source projects they concluded that AVL is the
most accurate in prediction the truck factor and predicting
developers responsible for that truck factor. In [12] they ex-
tended their study and found that a reason for poor predictions
of truck factor is by not considering social interaction like
code review, documentation, tests and supporting tools. This
motivates the importance of including the social dimension in
health prediction studies.

Another series of health-related studies aim to find the
reason for project failures. Coelho et al. [11] studied 5,000
GitHub repositories with the intent of finding the maintenance
challenges. They provided 9 reasons why open source projects
fail. In descending order of happening they are usurped
by competitors, obsolescence, lack of time, lack of interest,
outdated technologies, low maintainability, conflict among de-
velopers, legal problems and acquisition. They also proposed a
list of important open source maintenance practice, including:
the presence of a README file; the presence of a separate
project license file; the availability of a dedicated website to
promote the project, including examples and documentation;
the use of a CI service; the presence of a specific file with
guidelines for repository contributors; the presence of an issue
template and a pull request template.

In a study based on an analysis of 9,977 open-source npm
libraries, Qiu et al [23] showed that, for contributors that want
to engage in a new OSS project, features like GitHub stars,
recent commits, comprehensive README files and having
issue or pull request templates play an important role. While
projects with a higher number of stars will attract more
first-time GitHub contributors, the presence of contributing
guidelines has a significantly negative effect mostly because
it makes newcomers uncomfortable to join the work.

Another series of OSS development studies aims to deter-
mine why contributors disengage in open source. This is im-
portant to know because around 80% of open source projects
failure is related to issues with contributor turnover [24].
Miller et al. [8] conducted a study to determine the reasons
why people give up working on OSS projects. They considered
3 categories of reasons: occupational, social and technical.
The occupational reasons, in descending order of importance,
are: having a new job that doesn’t support OSS; change of
role/project; left job where they contributed to OSS; no time
because of new job; no time because of existing job; used
OSS in school but new job doesn’t support OSS; too much
code at work. The social reasons, in descending order of
importance, are: loss of interest; no time due to personal
reasons; lack of peer support; no time (unspecified reason).
The technical reasons, in descending order of importance,
are: issues with GitHub or industry; individually moved to
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private repertories; changed platform; feature complete project.
A possible extension to this work could be to study whether
the same reasons apply for collaborating on packages in a
software packaging ecosystem.

To determine the state of OSS project developers, Iaffaldano
et al. [5] considered three states: Alive, Sleep and Dead.
Based on interview with different developers they determined
that sleeping developers are those who do not contribute
code but still show interest in the project in other ways
such as answering emails and participating in discussions.
In contrast, dead developers are those who not only have
stopped providing code contributions for some time, but also
do not participate in any other community activity. Calefato
et al. [13] further studied this matter and observed that breaks
are rather common, in that core members take frequent breaks
or varying length and type. They observed that all developers
took at least one break, 97% of them transitioned to non-
coding and 89% to inactive. They also analyzed the probability
of the transitions to/from the inactivity state and observed
that core developers are more likely to remain in the projects.
However, if they transition to gone, they are less likely to come
back (54% probability on average). Extending this study to
software package ecosystems could be useful to understand the
migration of developers between different software packages,
as this may constitute a valid reason for contributors to become
inactive or change their state in a given software package.

Avelino et al. [6] studied abandonment and survival of OSS
projects. They concentrated on the truck factor developer de-
tachments (TFDDs) and the replacements of such abandoning
developers. They found that 59% of the TFDDs happened in
the first two years of project development; but 71% of the
projects with TFDDs have now between 4 and 7 years of
development. They also reported that recovering from a TFDD
is not uncommon in that about 41% of the projects survive. In
86% of these cases they do so by replacing the TF developer by
a single new contributor. They also studied the fact that if the
new TF developers were aware of risk of surviving system and
their reasons behind they contribute. 77% of the new TF were
partially aware the risk and their reason for their contributes
are: due to using the project; to contribute to an open source
project; to avoid the project discontinuation; having interest
in project area; getting paid to contribute; to improve their
own skill; having the skills required by this project; being a
successful project. This study shows us that in the first 2 years
of the project development the chance of losing a truck factor
developer is 59%. This can give us an idea that losing the
developers in different ages of software development can vary
and we probably should consider the age variable in different
aspects of our study in the software ecosystem more than
before.

Another aspect of software health is predicting the main-
tenance activity of a project, in order to determine whether
the project is going to be deprecated or not. Coelho et al. [1]
gathered a dataset of 6,785 most starred GitHub projects with
more than 2 years of source code data available (and hence
corresponding to actual software development projects). They

created a machine learning classifier based on the Random
Forest algorithm and used combination of project data, con-
tributors and owners for input. After training the model, they
achieved 86% precision in predicting if a project is going
to be abandoned or not. They confirmed the result with 129
developers and reached a precision of 80%. The top 5 features
of their model were commits, max days without commits in
months 22 to 24 of the project, max days without commits in
months 10 to 12, max contributions by developer in months
16 to 18, and closed issues in months 1 to 3 of last two years
of the project. Being able to predict the abandonment of a
project can help us predict the overall health of an evolving
software packaging ecosystem. At the level of the ecosystem,
this will help maintainers to predict the probable problem with
the project their own project depends on or even show them
that their own project is at the edge of failure and prepare
them for the future.

Decan et al. [25] proposed a probabilistic model and as-
sociated tool (called GAP) to predict the risk of contributor
abandonment, based on the previous commit activities of these
contributors. The model was evaluated on GitHub repositories
corresponding to development activity for reusable software
packages distributed through the Cargo package manager for
the Rust programming language. Studying migration patterns
of developers within the ecosystem is one of our goals and
having a tool that predicts when a developer is going to stop
contributing to a project can help to signal and predict future
developer migration patterns.

III. DATA GATHERING

This section presents the data gathering process that will be
used to answer our Research Questions.

To be able to work on truck factor, migration of the con-
tributors and studying the socio-technical behaviour of project
contributors affect on the project and ecosystem health, we
need to gather all the related data to the social and technical of
projects. Also, since this studies are related to the ecosystems
we need to focus on package managers.

The first phase will consist of gathering all relevant data
about the socio-technical package dependency networks of
packaging ecosystems. This can be achieved by retrieving
package metadata through the API provided by the package
manager of the corresponding package distribution. Each pack-
age manager (e.g. Cargo for Rust crates, npm for Node.JS
packages, and PyPI for Python packages) has its own dedicated
package registry and associated API. Examples of project-
specific information that can be retrieved in this way includes
the project’s homepage, repository link, owners and maintain-
ers, project classifier or category, project dependencies, version
numbers and release dates.

The second phase of the data extraction consists of retriev-
ing more specific socio-technical information from the devel-
opment repositories linked to each package in the packaging
ecosystem, that are typically hosted on some social coding
platform (e.g., GitHub). To do so, we will use the API of the
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corresponding hosting platform to retriveve relevant informa-
tion such as all issues, commits, pull requests, comments, tags
and releases, number of stars, forks, downloads and so on.

The third phase will involve data cleaning, and transforming
the collected socio-technical data into a uniform dependency
network structure that will enable to study socio-technical
issues in an ecosystem-independent way.

To address RQ4, in addition to the socio-technical data
gathered about the ecosystem and the projects contained in it,
we aim to gather the data related to the social media in which
the project or ecosystem contributors are involved, through
there dedicated APIs.

IV. RESEARCH PLAN

Considering the fact that my PhD research project has just
started, I am still actively exploring the research domain socio-
technical health of evolving software packaging ecosystems.
During my PhD studies, I aim to gain a deeper understanding
about the different aspect of health problems in software
packaging ecosystems and leverage this understanding by
developing models to predict and recommend the health of
these ecosystems. These models and associated tools will
be validated following a mixed-methods research approach,
combining quantitative analysis based on software repository
mining data with qualitative analysis based on surveys and
interviews with ecosystem contributors.

As a short term goal, I will concentrate on RQ1 by using
data of the socio-technical package dependency network to
come up with better algorithms for truck factor prediction and
determining truck factor developers. Next, I will try to build a
recommendation model for replacing truck factor developers.
This study has close connections with [4], [12] mentioned in
section II. Having better truck factor algorithm for determining
number of truck factor and truck factor persons leads to
increase of knowledge about the project health situation. In
ecosystem level, this will gives us an overview of important
people in the ecosystem and gives us opportunities to study
their social and technical behaviour in that ecosystem.

Next, I will focus on RQ2 to determine the important
socio-technical reasons for migration of developers across
projects within the ecosystem, as well as the reasons why
developers are joining or leaving an ecosystem. This study will
complement existing research on project survival by taking the
socio-technical dimension of the ecosystem into account.

Third, I will refer the results obtained for RQ2 by taking
into account the socio-technical behaviour of project contribu-
tions (RQ3) to which extent they play a role in project attrac-
tion, abandonment, retention and migration of contributors.

Finally, for RQ4 I will study to which extent the contribu-
tors’ activity in social media plays a role in any of the afore-
mentioned problems, which will hopefully lead to a further
improvement of the proposed prediction and recommendation
models.
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